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Higher Franz-Reidemeister torsion:
low dimensional applications

JOHN R. KLEIN

ABSTRACT. In this expository article I will discuss the theory of higher
Franz-Reidemeister torsion and its application to the construction of non-
trivial classes in the algebraic K-theory of fields. 1 will also explain how
these ideas may be used to construct classesin the cohomology of the Torelli

group.

Introduction

In this note I shall discuss the higher Franz-Reidemeister torsion invariants of
[K] and [I-K;]. What I shall be reporting on is joint work with Kiyoshi Igusa.
The first sections will set up the relevent formalism and state the general result. 1
then provide the results of the known calculations of the invariants in the special
case of circle bundles. This leads to a geometric interpretation of the algebraic
K-theory of cyclotomic fields. Finally, in the case of surface bundles, I shall
show how torsion can be used to construct classes in the rational homology of
the Torelli group, and I end by asking whether there is any connection between
them and the Miller-Morita-Mumford classes.

I. Preliminaries

In what follows X will denote a fixed topological space, M will be a compact
smooth manifold, and ¢: M — X will be a fixed map. We let Diff( M) denote
the topological group of diffeomorphisms of M and Maps(M, X) the space of
maps from M to X with basepoint ¢. Then Maps(M,X) has a left Diff( M)
action on it defined by f -1 = o f~'. Consider the orbit map of ¢ given by

Diff( M) — Maps(M, X)
frooft,
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and let Diﬁﬁ’(ﬂl) denote the homotopy fibre. This has a delooping, BDiff®(M)
which can be defined as the balanced product

E.D’Lﬁ(]\{) X Diff(M) M(Lps(fbﬂ X)

We will be mainly interested in the homotopy and homology types of BDiff¢(M).

Note that BDiff?(M) classifies smooth M-bundles p: £ — K over a pointed
finite complex together with a map GN) E — X extending ¢: M — X (we are
fixing once and for all an identification of M with the fibre over the basepoint
of K'). This information is summarized in the diagram

M
LN

E-% X
lp
K.

We will concentrate on two particular cases:

ExaMPLE 1.1. In this situation we take X = M and ¢: M — M the identity.
Then BDiff?(M) classifies smooth M-bundles which are trivialized as homotopy
fibrations. Furthermore,

BDiff®(M) = G(M)/Dif M)
= fibre( BDif( M) — BG(M)),

where G(M) is the topological monoid of self homotopy equivalences of M.

EXAMPLE 1.2. ¢: M — Bm is a map to a K(m, 1)-space. Let M be the
m-covering space of M defined by ¢. Then BDiff®(M) classifies bundles with
fibre M = the m-covering space of M defined by ¢ with structure group the
m-equivariant diffeomorphisms of M.

REMARK 1.3. Regarding these examples, it should be noted that the first fits
naturally within the context of the theory of (higher) Whitehead torsion (where
we take p: I/ = K to be a bundle of h-cobordisms which is trivial along one
boundary component). The second example is connected with (higher) Franz-
Reidemeister torsion, as we shall see below.

We single out a particular case of 1.2 which is relevent to mapping class
groups:

EXAMPLE 1.2". Let M be a closed orientable surface of genus g > 0, 7 =
H,(M), and ¢: M — BH;(M) the classifying map for the universal abelian
cover of M. Then Diff®(M) consists of diffeomorphisms of M which induce the
identity on one-dimensional homology. The set of path components of this is,
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by definition, the Torelli group Tj;. Moreover, the homomorphism of topological
groups

Diff*(M) =% T,
is a homotopy equivalence, i.e. the homotopy groups of Di,ﬂ‘d’(ﬂl) in positive
dimensions vanish. Consequently, the study of BDiﬁd’(A/’[) is the same as the
study of BTj,.

II. K-Theory

2.1. Spaces over X. Following Waldhausen [Wal|, let R;(X) denote the
category of retractive relative finite CW-complezes over X. An object of Ry(X)
is a space Z endowed with a pair of maps 1: X — Z, r: Z — X respectively
called #nclusion and retraction which satisfy

(1) roi=1idx;

(2) the inclusion ¢ is such that Z is obtained from X by the inductive at-
tachment of a finite number of cells—the attaching order given by the
dimension of such cells.

A morphism Y — Z of Ry(X) is a map of underlying spaces which commutes
with inclusion and retraction.

This is a category with cofibrations in the sense of Waldhausen. A cofibration
Y — Z is a morphismm whose underlying map of spaces is a cofibration in the
usual sense of the term.

2.2. Chain complexes. Fix an associative ring R with unit. Let C;(R)
be the category of finite free chain complezes over R. An object of Ct(R)
is a finite dimensional chain complex which has chains in dimensions > 0 and
moreover, which is finitely generated and free in each dimension as an R-module.
A morphism of C';(R) is a chain map. A cofibration is a chain map which is split-
injective in each dimension. A weak equivalence is a chain homotopy equivalence.
The subcategory of weak equivalences will be denoted by wC'f(R).

ProrosiTiON 2.3. (Waldhausen). The Waldhausen K-theory of Cr(R) is
naturally homotopy equivalent to the representing space for Quillen’s algebraic
K -theory of R, 1.c.

QuwS.Cy(R)| ~ K(R):=Zjyn) ¥ BGL(R)*,
where on the left, wS. is the S.-construction of [loc. cit.], and on the right n(R
is the order of the class defined by R in the Grothendieck group Ko(R), and
denotes Quillen’s plus construction [Q].
ITI. Linearization Functors

By a linearization functor, we shall mean any functor

A: Rp(X) — Cy(R)
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satisfying the following:
(1) Ais ezact. By this I mean that A preserves the cofibration property, and
moreover, if
A— 7

Lo

Y —— P
is a pushout diagram in R¢(X) (with cofibrations as horizontal arrows),
then A applied to the diagram is also a pushout diagram.
(2) A(X) =0, where X is considered as an object over itself via the identity
map, and 0 denotes the trivial chain complex over R.
(3) If Z is an object of R¢(X) and i: X — Z is a homotopy equivalence,
then A(Z) is acyclic.

For a given linearization functor A, we obtain a subcategory of weak equiv-
alences in R;(X) by specifying ¥ — Z to be a weak equivalence if and only
if A(Y) = A(Z) is a weak equivalence in Cf(R). We let wyR;(X) denote the
category of weak equivalences defined by A. Then the exactness properties of A
and 2.3 show that

PROPOSITION 3.1. Let AMNX) = Q|wxS.Ry(X)| be the Waldhausen K -theory
of Rp(X) with respect to the weak equivalences defined by A. Then application
of A defines a map

AMX) - K(R)

which for short will also be denoted by A.
Here are a few examples of linearization functors:

EXAMPLE 3.2. Let G be the fundamental group of X, and define a lineariza-
tion functor A: Rp(X) — Cf(Z[G]) by the rule

A(Y) — C’iC“(YG’ XG)1

where X¢ is the universal cover of X, Y9 is the pullback of X¢ — X along
the retraction r: ¥ — X, and and C¢!'(—) denotes the cellular chain complex
considered as a free module over Z[G].

Note that the weak equivalences of R;(X) with respect to this A are the
G-equivariant relative homology equivalences, or equivalently by Whitehead’s
theorem, the relative homotopy equivalences. Consequently, A*(X) is identical
to Waldhausen’s A(X), and the map

A: AX) = K(Z[G))

of 3.1 is the usual linearization map into algebraic K-theory.
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ExAMPLE 3.3. Let F be a field with involution. Suppose we are provided
with a unitary representation p: G — U,(F), where G is the fundamental group
of X.

Define a linearization functor A(p): R;(X) — C(F) by the rule

Ap)(Y) = CM (Y9, XY gy T

where on the right hand side the left factor is as in 3.2 and the right factor F”
has the Z[G]-module structure defined by p. Proposition 3.1 then yields a map

AMP(X) o K(F).

IV. The A-Whitehead Space

Let A(X) be Waldhausen’s K-theory of X defined as in 3.2 using the subcat-
egory hRy(X) of R¢(X) of relative homotopy equivalences.

Let A: Ry(X) — Cy(R) be an arbitrary linearization functor. By applica-
tion of axioms (1)-(3) in the definition of a linearization functor, it follows that
hRy(X) C waRf(X). We infer that there is a natural transformation

Na: A(X) = AMX).
As is well-known, there is a natural map
it Q4 (X) = A(X),

(which is a split inclusion up to homotopy) where Q4 (—) denotes the unreduced
stable homotopy functor. Let QW h(X; A) be the homotopy fibre of the compos-
ite

Q4 (X) 5 AX) 28 4MX) D K(R).

There is then a homotopy fibration
QWh(X;A) = Q4(X) —» K(R).

REMARKS 4.1. (1). The notation QWh(X;A) for the fibre Q+(X) — K(R)
indicates that the fibre deloops. This is indeed the case since the latter is an
infinite loop map.

(2). If Ais asin 3.2, then the set of path components of QWh(X; A) is canonically
isomorphic to the Whitehead group Why(m(X)). If A is as in 3.3, the set of
path components is canonically isomorphic to the target group for the classical
Franz-Reidemeister torsion (see e.g. [K]).
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V. Higher Torsion

We now return to the context of §1. Namely, we consider classifying spaces
associated with data of the form

M
A
E % x

ip
K

where p is a smooth M-bundle. Fix once and for all a cell structure on M. Form
the following object of R;(X):

Mxy=MIIX,

with the obvious inclusion, and where the retraction is r = ¢ Il idx. Similarly,
let Xx be the object of Rf(X) given by X IT X with retraction idy Iidx and
with inclusion X — X IT X given by the identity on the second component.
ConTrACTIBILITY HyPoTHESIS 5.1(1). The map ¢ Ilidx: My — Xy is a
weak equivalence in wy Ry(X).
Acycuicrry Hyporuests 5.1(2). My € obRy(X) is weakly equivalent to
the initial object X in wyR¢(X), i.e., the R-chain complex A(My) is acyclic.

The main theorem on higher Franz-Reidemeister-Whitehead torsions may be
stated as follows:

THEOREM 5.2. (Igusa-Klein [K|,[I-K1]). If either the Contractibility Hy-

2

pothesis 5.1(1) or the Acyclicity Hypothesis 5.1(2) holds, then there is a map
A
BDiff*(M) == QWh(X;A).

REMARKS 5.3. (1). If (p, GN’)) are a (fibre bundle, map)-pair as above, then
the classifying map followed by the torsion 7% gives rise to a homotopy class in

[K, QW h(X; A)] which is an invariant of the pair.

(2). The definition of 7* uses the parametrized Morse theory developed by Igusa
[I,], which in effect says that on any smooth bundle M — E — K there exists a
“fibrewise generalized framed Morse function” provided that dim(K) < dim(M)
(this last consideration can be avoided by taking the product of the total space
with a disk of sufficiently large dimension). One then shows how to associate
to this a “family of poset-filtered chain complexes” parametrized by points of K
[I-K;]. The torsion is essentially defined in terms of this association.

(3). As stated, 5.2 says nothing about the non-triviality of 7. However, the
calculations of §7 will show that 7% for certain choices of A is non-trivial on
second homotopy groups.
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(4). Suppose X has trivial rational homology (e.g. X = BG for G a finite
group). Then Q4 (X) is rationally the same homotopy type as Z and conse-
quently QWh(X;A) has the same rational type as the identity component of
QK (R) (assuming that the order of R in its Grothendieck group is infinite). In

particular, if K = S* is a sphere, we get an invariant in Kj41(R) ® Q.
The reason for calling 7% “higher torsion” is articulated in the following:

OBSERVATION 5.4. ([I-Ki]). Let A be as is in example 3.2. and suppose
¢: M — X is a homotopy equivalence. Then 5.1(1) is satisfied. Regard M as
being a bundle over a point (i.e., M — M — x). Then the path component of
™ (M, ) € QWh(X;A) is given by the Whitehead torsion of & (cf. 4.1).

Similarly, if A(p) as in 3.8 (associated with representation p: G — U,(F)),
and ¢: M — BG, then 5.1(2) is satisfied. Then the path class of T (M, ) is

the classical Franz-Reidemeister torsion of (M, p).

As a further justification for using this terminology, it should be noted that
for bundles over S' the torsion in our sense coincides with the K,-type torsion
invariants defined by Hatcher-Wagoner [H-W] and Wagoner [W].

VI. Relation of 7 to the Becker-Gottlieb Transfer

In this section we assume that hypothesis 5.1(2) is satisfied.

Consider the composition
. A
BDiff? (M) — QWh(X;A) = Q4+(X),

where the second map is inclusion of the homotopy fibre. Let us denote this
composite by T.

Now suppose we are given a map f: K — BDiff? (M), or equivalently, by §1,
abundle M - E 5 K together with extension &: E = X of ¢. It follows from
the construction of 7 that

ProroOsSITION 6.1. T applied to f s homotopic to the Becker-Gottlieb transfer

(IB-C-G]) pl: K = Q1(E) of p followed by Q4(0): Q+(E) = Q4 (X).
We remark in passing that there is an analogous result for those bundles which
satisfy 5.1(1).

VII. Higher Torsion of Circle Bundles and Kj;

The material of this section is summarizes computations carried out in [I-Ks].

Let $* —» E 2% 2 be the circle bundle over the 2-sphere with Euler class n.
E is therefore the lens space L(n,1) = S /Z,.

Setting X = BZ,, and ¢: S' — BZ, the characteristic map for the n-fold
cover §7 = S', it is clear that ¢ naturally extends to (,; E — BZ,,.
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Let Q(¢n) be the cyclotomic number field given by adjoining a primitive nth-

root of unity to Q. Let pn: Z, = Ui (Q(¢n)) = Q(¢r)* be the representation
defined by sending the generator (,,. We then obtain a linearization functor

Alpn): Bf(BZn) = Cr(Q(¢n))

as in 3.3. Moreover, the Acyclicity Hypothesis (5.1)(2) is clearly satisfied since
the homology of the local system on S' defined by p, is entirely vanishing.
Consequently, the higher Franz-Reidemeister torsion 7 (p,,) is defined and is an
element of mo(QWh(BZ,; A(p))) (cf. 5.3(1)).

We next show that this element lifts up to an element of K;;(Q(Q,,,)).

Let 0: K3(Q(¢n)) = m(QWh(BZy; A(p))) be the boundary operator in the
homotopy exact sequence of the homotopy fibration

OWh(BZn: A(p)) = Q4+ (BZy) = K(Q(Cn))-
The following was pointed out to me by Igusa:
OBSERVATION. The Becker-Gottlieb transfer S? — Q4 (E) is null homotopic.

The reason this is so is simply that the transfer is represented as the Thom
construction of a stably framed submanifold of the total space E which in the
case at hand is codimension one (= dim(S1)). Such a manifold must necessarily
bound in E in a stably framed way, since E = L(n, 1) is parallelizable.

Consequently, by 6.1, the composite S? i} QWh(BZ;A(p)) = Q+(BZy)
is null, and thus the torsion is in the image of the boundary operator 0.

Let K3(Q(¢,)) — R be the Borel regulator [B].

THEOREM 7.1. (Iqusa-Klein [I-Kz]). Let z, € K3(Q((,)) be any lft of
AP (pn). Then the value of the Borel requlator on x, is

n - im(dilog(G,)),

where dilog(z) = 3. 2% [k* is the dilogorithm function.
In particular, the x, are distinct for different values of n.

VIII. Higher Milnor Torsion

The idea of this section is that one can sometimes disregard the Contractibility
and Acyclicity Hypotheses (5.1(1)(2)) and still obtain higher torsion invariants.
A result of this type was announced by Igusa in his 1990 ICM lecture [I,].

The idea originally goes back to Milnor [M]. In this instance, one has a chain
complex C, over a principal ideal domain R. Milnor constructs a torsion-type
invariant which lives in F* /R*, where F is the field of fractions of R.

To do this, one appeals to elementary homological algebra to find a chain map
g H(C)®F = C, @ F such that H,(C) is the homology of C, considered as
a chain complex with zero boundary operators, and such that g, is the identity
on homology.
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It follows that g. is degree-wise injective and so the quotient complex
D. = C. 9 F/g.(H.(C) 5 F)

is acyclic. Hence the Reidemeister torsion 7(D.) € F*/R* is defined once a
basis for D, is chosen. Such a basis is obtained by choosing a basis for C, and
H.(C) over R. One then proves that the torsion is independent of the choice of

Gx-
We next consider the parametrized case. I will state Igusa’s result in the
special case R = Z.

TueoreM 8.1. (Igusa). Let M — E L K be a smooth manifold bundle such
that H.(M;Q) — H.(E;Q) is injective. Then p determines a torsion invariant

r(p) € [K, QK (Z) 2 T,
where @Q denotes the rationalization functor from spaces to spaces.

We note that 7(p) coincides with the torsion 7* of 5.2 when M is a disk.

IX. Torsion and Torelli

Using 8.1, we shall construct classes in H“(BTQ), where T} is the Torelli
group of a closed surface X of genus g > 0. Let

S — BDiff*(S, ) — BDiff*(%)

be the universal X-bundle with base homotopy equivalent to BT, (1.2"). As
Y — BH;(X) extends to the total space, it is an elementary exercise to see that
H.(Z) — H.(BDiff*(Z, x)) is injective.

Applying 8.1 together with 5.3(4), we obtain a map
BT, ~ BDiff*(¥) — QK(Z)® Q.
Taking cohomology, we get a map
H(QK(2):Q) — H* (BT, Q).

By Borel [B], it is known that the source is a polynomial algebra generated by
classes p;, ¢+ € N, where p; has dimension 4:. Pushing these classes forward, we
get classes

w; € HY(BT,; Q).
On the other hand, we also have the Miller-Morita-Mumford classes

;i € H*(BT,; Q)

which are defined by integrating the (i + 1)™-power of the Euler class along the
fibres of the universal ¥-bundle. Tt would seem natural to ask
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QUESTION 9.1. Is there a relation between w; and ko;?

ReEMARKS 9.2. (1) My original phrasing of 9.1 was somewhat different. I
am grateful to Richard Hain for providing the present formulation, which he

communicated to me at the time of the workshop.

(2) Added Note: The original conjecture was that the classes in 9.1 should be

rational multiples of one another, but recently, Igusa and Penner have shown that

there are nontrivial classes y; arising from K -theory such that w; —y; is a nonzero

multiple of ko;. The construction of the y; appeals to Penner’s combinatorial

description of the moduli space of Riemann surfaces given by “fat graphs”.

REFERENCES

[B-C-G] J.C. Becker, A. Casson, D.H. Gottlieb, The Leftshelz number and fiber preserving
maps, Bull. AMS 81 (1975), 425-427.

[B] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ecole Norm. Sup.
(4) 7 (1974), 235-272.

[H-W]  A. Hatcher, J. Wagoner, Pseudo-isotopies of compact manifolds, Astérisque 6 (1973).

[14] K. Igusa, The space of framed functions, Trans. AMS 301 (1987), 431-477.

[I2] . Proceeedings ICM 1990.

[I-Ky] K. Igusa, J. Klein, Filtered chain complexzes and higher Franz-Reidemeister torsion,
preprint.

[1-Ka] , The Borel regulator map on pictures Il: an example from Morse theory,
preprint.

K] J. Klein, Parametrized Morse theory and higher Franz-Reidemetster torsion, preprint.

M] J. Milnor, Whitehead torsion, Bull. AMS 72 (1966), 358-426.

Q] D. Quillen, Higher K-theory for categories with exact sequences, New developments
in topology LMS notes 11, Cambridge University Press, London, 1974, pp. 95-104.

[W] J. Wagoner, Diffeomorphisms, Ka, and analytic torsion, Algebraic and geometric
topology, Proc. Symp. Pure Math. XXXIX, AMS, Providence RI, 1978, pp. 23 33.

[Wal] F. Waldhausen, Algebraic K-theory of spaces, Springer LNM 1126, Springer-Verlag,

New York, 1985, pp. 318-419.

FAKULTAT FUR MATHEMATIK, UNIVERSITAT BIELEFELD, 4800 BieLEFELD, FRG

E-mail address: klein@math6.mathematik.uni-bielefeld.de



