
AXIOMS FOR GENERALIZED FARRELL-TATE
COHOMOLOGY

JOHN R. KLEIN

Abstract. In [Kl] we defined a variant of Farrell-Tate cohomol-
ogy for a topological group G and any naive G-spectrum E by tak-
ing the homotopy cofiber of a certain norm map DG∧hGE → EhG.
In this paper, we show how to axiomatize this theory. We then in-
terpret the norm map as the assembly map for the homotopy fixed
point functor E 7→ EhG.

1. Introduction

The Tate cohomology groups Ĥ∗(G; M) were introduced in order
exploit the similarities between the cohomology and the homology of
groups. At first, they were defined for finite groups G equipped with a
Z[G]-module M . Later, Farrell [Fa] extended the definition to discrete
groups having finite virtual cohomological dimension.

Based on a construction appearing in [Kl], one can associate a gener-
alized Farrell-Tate spectrum EtG to any topological (or discrete) group
G and any naive G-spectrum E. In this way, we obtain generalized

Farrell-Tate groups Ĥ∗(G; E) by taking the homotopy groups of EtG.
These groups have many of the formal properties of the classical theory
(the classical case occurs when G is discrete and E is an Eilenberg-
MacLane spectrum).

It is the purpose of this paper to show how to characterize EtG by
a short list of axioms.

The axioms. Let SpG denote the category of naive G-spectra, where
G denotes the realization of a simplicial group. Suppose we are given
a functor

E 7→ EtG

from G-spectra to spectra which satisfies the following four axioms:
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Axiom 1. (Homotopy invariance). The functor E 7→ EtG preserves

weak equivalences.

A weak equivalence of G-spectra is a morphism which induces an
isomorphism on homotopy groups.

Axiom 2. (Vanishing on finite objects). EtG is weakly contractible

whenever E is a finite G-spectrum.

A G-spectrum is said to be finite if it is built up from the zero object
by attaching a finite number of free cells.

This axiom requires some explanation: if G is a finite, discrete group
and M is a free Z[G]-module, then the Tate groups Ĥ∗(G; M) vanish
(this uses [Br, Ch. VI,5.3]). In particular, if M is finitely generated and
free, the Tate groups vanish. We justify Axiom 2 by thinking of the
finite G-spectra as spectrum level versions of the finitely generated free
Z[G]-modules.

The spectrum level analogues of the free modules are the induced
spectra, i.e., the G-spectra of the form W ∧ G+, where W is an un-
equivariant spectrum. The reader might justifiably ask why we haven’t
demanded the stronger requirement:

Axiom 2’. (Vanishing on induced objects). EtG is weakly con-

tractible whenever E is an induced G-spectrum.

We have two reasons for not requiring Axiom 2’. The first is that
Axioms 1-4 are equivalent to Axioms 1,2’,3 and 4 whenever G happens
to be a compact Lie group (this uses [Kl, Cor. 10.2]). The second
reason is that in the case of a general topological group G, I know of
no example of a functor E 7→ EtG which satisfies Axioms 1,2’,3 and 4
(it seems likely to me that a modification of Axiom 4 would be needed
if Axiom 2’ is imposed).

Weiss and Williams [W-W2] also construct a variant of Farrell-Tate
cohomology for arbitrary topological groups. Their functor satisfies
Axioms 1, 2’ and 3. However, it is not obvious to me (and is probably
not the case) that their functor satisfies Axiom 4 for arbitrary groups G.
However, in the case when the input G-spectrum E has finite skeleta,
it is not difficult to see that their construction is equivalent to the one
given in this paper.

Axiom 3. (Relation to group cohomology). The functor EtG

comes equipped with a natural transformation EhG → EtG, where EhG

denotes the homotopy fixed point spectrum of G acting on E.
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Axiom 4. (Homology axiom). Let EtG be the homotopy fiber of

EhG → EtG. Then the functor E 7→ EtG is a homology theory.

Being a homology theory means:

• the value at the zero object is (weakly) contractible,
• the functor is preserves homotopy cocartesian squares, and
• the functor commutes with filtered (homotopy) colimits.

(The first two conditions mean that the functor is excisive.)

Thus the functor E → EtG can be viewed as the “difference” be-
tween a homology theory and a cohomology theory. In particular,
E 7→ EtG is excisive.

Theorem A (Existence). There exists a functor E 7→ EtG satisfying
Axioms 1-4 above.

(Uniqueness). Given another homotopy functor E 7→ EwG satisfying

Axioms 1-4, there exists a chain of weak equivalences EtG ≃
→ EwG

which transfers the natural map EhG → EtG onto the natural map
EhG → EwG.

Remark 1.1. It will be shown in §5 that the homotopy cofiber of the
norm map

DG ∧hG E → EhG

(see [Kl]) satisfies Axioms 1-4. Here DG denotes the dualizing spectrum
of G, which was defined in [Kl] to be the homotopy fixed spectrum of
G acting on the suspension spectrum of G+.

The uniqueness part of Theorem A says that E 7→ EtG is unique
in the homotopy category of functors equipped with a natural trans-
formation from the homotopy fixed point functor. In a sense which
we won’t bother to make precise, the category of all factorizations
EhG → EtG ∼

→ EwG has contractible realization.

Assembly. Let C be a Quillen model category [Qu]. In particular,
the notion of homotopy cocartesian square makes sense in C. Let Sp
denote the category of spectra. Suppose that

F : C → Sp

is a functor which preserves weak equivalences.

Definition 1.2. (cf. [W-W1]). A natural transformation

αF : F% → F

of homotopy functors is said to be an assembly map if it possesses the
following properties:
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• F% is a homology theory.
• The map αF is a “universal” approximation (from the left) of F

by a homology theory (in the homotopy category of functors):
i.e., given any natural transformation G→ F with G a homol-
ogy theory, there is a factorization G→ F% → F up to formal
inversion of (pointwise) weak equivalence of functors.

Note that any two choices of assembly map are isomorphic in the
homotopy category of functors.

Classically, C was taken to be the category of topological spaces,
and F was the L-theory functor. In fact, Weiss and Williams prove
that any homotopy invariant F from spaces to spectra has an assembly
map. In this paper, we take C to be the category of G-spectra, and F

will be the homotopy fixed point functor E 7→ EhG.

Theorem B. The norm map DG ∧hG E → EhG is the assembly map
for the homotopy fixed point functor E 7→ EhG.

We can now reformulate part of [Kl, Th. D] in this language. Re-
stated, we obtain a solution to “Borel Conjecture” for the homotopy
fixed point functor:

Corollary C. Let G be a topological group with π0(G) finitely pre-
sented. Then the following are equivalent:

• The classifying space BG is finitely dominated,
• The assembly map for the homotopy fixed point functor is a

weak equivalence at every object E.
• The assembly map for the homotopy fixed point functor is a

weak equivalence when E = S0 is the sphere spectrum (with
trivial G-action).

Outline. §2 is primarily language. In §3 we prove the existence part of
Theorem A. In §4 we introduce a construction which enables us later
to reinterpret the cofiber of the norm map. §5 contains the proof of the
uniqueness part of Theorem A. In §6 we prove Theorem B. §7 discusses
a variant of the norm map which is related to Carlsson’s transfer for
infinite groups.

2. Conventions

All spaces are assumed to be compactly generated. The term “topo-
logical group” means a group object in the category of compactly gener-
ated spaces. We will only consider those topological groups which arise
as the geometric realizations of simplicial groups. (This is not a serious
restriction, as a topological group can be replaced by the realization of



GENERALIZED FARRELL-TATE COHOMOLOGY 5

its singularization, and the constructions of [Kl] are insensitive to such
manipulations.)

A (naive) G-spectrum E consists of based, left G-spaces En, and
based G-maps ΣEn → En+1, where by convention G acts trivially on
the suspension coordinate of the domain. For technical reasons, we
typically assume that the underlying spaces of En are CW complexes.
If necessary, this can always be arranged by applying singularization
then realization degreewise to the spaces in a G-spectrum.

A morphism E → E ′ of G-spectra consists of based G-maps En →
E ′

n which are compatible with the structure maps. A morphism is
a weak equivalence if it induces an isomorphism on homotopy groups.
Weak equivalences are indicated by

∼
→, and a chain of weak equivalences

is indicated by ≃. Schwede [Sc] has shown that the above notion of
weak equivalence arises from a Quillen model category structure on
the category of G-spectra. We now describe the fibrant and cofibrant
objects in this model structure.

The fibrant objects in this instance are the Ω-spectra (i.e., those
G-spectra E such that the adjoint En → ΩEn+1 is a weak homotopy
equivalence of spaces for all n). If E is a G-spectrum, it has a functorial

fibrant approximation E
∼
→ Ef given by Ef

n := hocolimjΩ
jEn+j .

To describe the cofibrant objects, let k be an integer. Define Sk−1
G to

be the object which in degree j is given by Sk−1+j ∧G+ if k−1+j ≥ 0,
and a point otherwise (here the structure maps are obvious). Let Dk

G

denote the object given by taking the degreewise cone on Sk−1
G . Then

Dk
G is the free cell of dimension k. Given a morphism f : Sk−1

G → Y ,
we can form the object Y ∪f Dk

G, which is the effect of attaching a
k-cell. The cofibrant G-spectra are then the (retracts of) spectra built
up from the zero object by attaching free cells. Every G-spectrum E

has a functorial cofibrant approximation Ec ∼
→ E. (The procedure for

constructing the latter is essentially the same as the one given in [D-S]
for topological spaces; we omit the details.)

The finite G-spectra are those objects built up from the zero object
by a finite number of free cell attachments.

The homotopy orbit spectrum EhG of G-acting on E is given by
EG+ ∧G E, i.e, the spectrum which in degree n is EG+ ∧G En = the
orbits of G acting En made free. The homotopy fixed point spectrum
is given by F (EG+, Ef)hG = the spectrum which in degree n is the
function space of based G-maps from EG+ to (Ef)n.

The category of G-spectra has homotopy limits and colimits (cf.
[B-K]). To describe the n-th space of the homotopy colimit of a diagram
α 7→ Eα of G-spectra, one simply takes the homotopy colimit of the



6 JOHN R. KLEIN

associated diagram of n-th spaces α 7→ (Eα)c
n (where (Eα)c is the effect

of making Eα cofibrant). Similar remarks apply to homotopy limits.

We shall use handicrafted smash products of equivariant spectra (we
only require associativity up to homotopy). If E is an H-spectrum, and
W is a G-spectrum, then E ∧W is a (G×H)-spectrum.

We refer the reader to [Kl] for a more detailed discussion of the
category of G-spectra.

3. Proof of the Theorem A (existence)

Recall from [Kl] that we defined EtG to be the homotopy cofiber of
a certain norm map

DG ∧hG E → EhG

in which

• DG is the dualizing spectrum of G. Recall that the latter is de-
fined to be S0[G]hG where S0[G] denotes the suspension spec-
trum of G+, homotopy fixed points are taken using the G-action
defined by translation using the left action of G on G+ and the
action of G on DG is defined by translation with respect to the
right action of G on G+.
• The domain of the norm map is the homotopy orbit spectrum

of G acting diagonally on the smash product of DG ∧E.
• The codomain of the norm map is the homotopy fixed point

spectrum of G acting on E.

For reasons of space, we will not review the construction of the norm
map (in any case, we shall later reconstruct it in §4-5). However, as
remarked in [Kl], there is a straightforward way to think of the con-
struction, provided one is willing to accept that the homotopy category
of G-spectra has internal function objects. The norm map may then
be defined as the composition pairing

hom(S0, S0[G]) ∧S0[G] hom(S0[G], E)→ hom(S0, E) ,

where hom is taken in the homotopy category of G-spectra. Here S0

denotes the sphere spectrum (with trivial G-action). In the homo-
topy category, the function object hom(S0, S0[G]) is isomorphic to DG,
hom(S0[G], E) is isomorphic to E and hom(S0, E) is isomorphic to
EhG.

We now establish the existence part of A. Axiom 1 is a consequence
of the fact that taking homotopy cofibers is homotopy invariant. Axiom
2 follows from [Kl, Th. D] (since we showed there that the norm map is
a weak equivalence for finitely dominated G-spectra). Axiom 3 results
from the fact that there is an evident map from EhG into the homotopy
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cofiber of the norm map. Axiom 4 is a consequence of the fact that
the homotopy fiber of the map EhG → EtG is identified with DG∧hG E

and the functor E 7→ DG ∧hG E is clearly a homology theory.
This establishes the existence part of Theorem A. It remains for us

to establish the uniqueness part. �

4. A construction

We digress here to give an alternate description of the cofiber of
the norm map. This will be used to establish the uniqueness part of
Theorem A.

Motivation. Suppose it were possible to write any G-spectrum E up
to weak equivalence as a homotopy colimit

E ≃ hocolim
α

Eα

in which Eα are finite G-spectra. Assuming this, we define E(α) to be
the homotopy cofiber of the map Eα → E, then we get a spectrum

Et′G := hocolim
α

(E(α))hG .

If one could make the assignment E → Et′G functorial and homotopy
invariant, then an argument given below shows that Et′G and EtG are
naturally weak equivalent.

As a first guess at what this system of finite G-spectra might be,
take the indexing category of the homotopy colimit to have objects
α : Eα → E where Eα is any finite G-spectrum and α is any map of
G-spectra. A morphism is then a map f : Eα → Eβ such that β◦f = α.
There is then an evident map from the homotopy colimit of the diagram
defined by α 7→ Eα into E.

However, this construction presents several technical difficulties. For
one thing if E fails to be an Ω-spectrum, then there might not be
enough maps into it. Secondly, the indexing category isn’t filtered, so
it is difficult in general to identify the homotopy type of the homotopy
colimit. To avoid these difficulties, we perform a simplicial version of
the forgoing, which has better properties.1 Thereafter, we use singu-
larization and realization to give us a well-behaved construction for
topological spectra.

1I would like to thank S. Schwede for explaining to me why the simplicial version
has better properties.
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The simplicial version. Let G. be a simplicial group. A (simplicial)
G.-spectrum is collection of based simplicial sets {En}n≥0 with (based,
left) G.-action, together with equivariant structure maps ΣEn → En+1.
Note that the realization |E| of E taken degreewise has the structure of
a topological G-spectrum, where G = |G.|. Similarly, the singulariza-
tion SingW of a topological G-spectrum W is a simplicial G.-spectrum.

A map E → E ′ of G.-spectra consists of equivariant maps En → E ′
n

which are compatible with the structure maps. A map E → E ′ is a
weak equivalence if |E| → |E ′| is a weak equivalence. Schwede [Sc] has
shown that this notion of weak equivalence arises from a Quillen model
structure on the category of G.-spectra.

We will mostly need to know what the fibrant and cofibrant objects
are in this model structure. The fibrant objects are those G.-spectra
E which are degree-wise Kan simplicial sets (after forgetting actions)
and moreover, the adjoints En → ΩEn+1 to the structure maps are
weak homotopy equivalences. A cofibrant object is the retract of an
object which is built up from the zero object by attaching free cells
(equivalently, a cofibrant object E is one in which En is free away from
the basepoint, and moreover, the structure map ΣEn → En+1 is a free
map, i.e., En+1 is obtained from En by attaching free G.-cells). An
object E is finite if it is built up from a the zero object by attaching a
finite number of free cells.

Given a fibrant and cofibrant G.-spectrum E, we can consider the
homotopy colimit

E♭ := hocolim
α∈CE

Eα ,

where the indexing category CE is defined so that

• objects are maps α : Eα →W such that Eα is finite G.-spectrum,
and
• morphisms are maps f : Eα → Eβ such that β ◦ f = α.

Lemma 4.1. The category CE is filtered.

Proof. If α : Eα → E and β : Eβ → E are objects, then the coproduct
α+β : Eα∨Eβ → E is an object which is the base of a cone containing
α and β.

Let f, g : Eα → Eβ be a pair of morphisms of CE and let Eγ denote
their equalizer in the category of G.-spectra. Then Eγ is finite and the
base of a cone containing f and g. �

Lemma 4.2. The evident map E♭ → E is a weak equivalence.
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Proof. Let IE denote the category whose objects are α : Eα → E such
that α is an inclusion. Morphisms Eα → Eβ are also required to be
inclusions.

Then the inclusion functor IE → CE is cofinal: (i) if α : Eα → E

is an object of CE , then the image of α is an object imα → E of
IE, and there is an evident morphism Eα → imα; (ii) if t : B → E

is another object of IE together equipped with a morphism Eα → B,
then imα ⊂ B. These two properties show that IE ⊂ CE is cofinal.

Consequently, we have an isomorphism of colimits (not homotopy
colimits)

colim
α∈IE

Eα
∼= colim

α∈CE

Eα .

But homotopy groups commute with filtered colimits, so one has that
the colimit on the right is identified with the corresponding homotopy
colimit.

On the other hand, the evident map

colim
α∈IE

Eα → E

is a weak equivalence because a map from a finite object into E auto-
matically factors through this colimit. �

Remark 4.3. The previous lemma shows that we could have used IE

instead of CE as the indexing category of the homotopy colimit. How-
ever, the reason why we use CE is that the associated homotopy colimit
is functorial.

A version for topological G-spectra. Suppose next that E is a
(topological) G-spectrum, where G = |G.|. Let Ec,f be the result of
making E functorially fibrant and cofibrant. Define sE to be SingEc,f =
the degreewise singular complex of Ec,f. Then there is a functorial chain
of weak equivalences from |sE| to E. Moreover, sE is both fibrant and
cofibrant.

Let E 7→ E♯ be the functor from G-spectra to G-spectra given by

E♯ := hocolim
α∈CsE

|Eα|.

Using 4.2, we have

Proposition 4.4. The functor E 7→ E♯ admits a chain of natural weak
equivalences to the identity.
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The functor E 7→ Et′G. Using the indexing convention in the colimit,
Define E(α) to be the homotopy cofiber of the map |α| : |Eα| → |sE|.
Note that the homotopy colimit of the E(α) is weakly contractible by
4.2 because there are cofibration sequences |Eα| → |sE| → E(α).

Let us define

Et′G := hocolim
α

(E(α))hG ,

where the homotopy colimit is indexed over the category CsE.

Proposition 4.5. There exists a natural weak equivalence

EtG ≃ Et′G ,

where EtG denotes the homotopy cofiber of the norm map).

Proof. For each index α ∈ CsE, we have a homotopy cofiber sequence

DG ∧hG E(α) → (E(α))hG → (E(α))tG

Consequently, taking homotopy colimits, we obtain a homotopy cofiber
sequence

hocolim
α

DG∧hGE(α) → hocolim
α

(E(α))hG → hocolim
α

(E(α))tG .

The first term is weakly contractible, since (i) the homotopy colimit of
the E(α) is weakly contractible and (ii) smash product with DG and
homotopy orbits commute with (homotopy) colimits. By definition,
the second term of this sequence is Et′G. We infer that the evident
map

Et′G → hocolim
α

(E(α))tG

is a weak equivalence.

Let 0 : ∗ → |sE| denote the map from the zero object. To complete
the proof of the proposition, it will suffice to show that the inclusion

EtG ≃ (E(0))tG → hocolim
α

(E(α))tG

is a weak equivalence. For this to be true, we need only show that
the maps (E(α))tG → (E(β))tG are weak equivalences for a morphism
f : Eα → Eβ . This follows from Axioms 1 and 4 by applying (−)tG to
the homotopy cofiber sequence Cf → E(α) → E(β) and observing that
the first term of the latter (= the homotopy cofiber f) is finite up to
homotopy. �

Remark 4.6. In the above construction, if one replaces “finite” by
“bounded” G-spectra, one obtains a possibly different theory E 7→ EfG

that satisfies axioms 1, 2’ and 3. It can be shown (we omit the proof)
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that this variant coincides Vogel cohomology [Go] when G is discrete
and E is an Eilenberg-MacLane spectrum.

5. Proof of the Theorem A (uniqueness)

Let E 7→ EwG be a functor satisfying Axioms 1-4. In particular, we
have a natural map EhG → EwG. Then, with respect to the notation
of the previous section, we have maps

(E(α))hG → (E(α))wG ≃
← (|sE|)wG ≃ EwG ,

where the second map is given by applying the functor (−)wG to the ev-
ident map |sE| → E(α) (the second displayed map is a weak equivalence
by the same argument used in the proof of 4.5). To avoid notational
clutter, in what follows we will abuse notation and identify E with
|sE|. With respect to this change of notation, we have compatible
maps E → E(α).

Since we have natural transformations EhG → EtG and EhG → EwG,
for each index α the diagram

EtG ←−−− EhG −−−→ EwG

y
y

y

(E(α))tG ←−−− (E(α))hG −−−→ (E(α))wG

commutes. Consequently, there is a commutative diagram involving
the associated homotopy colimits

EtG ←−−− EhG −−−→ EwG

≃

y
y

y≃

hocolim
α

(E(α))tG ←−−−
≃

hocolim
α

(E(α))hG −−−→ hocolim
α

(E(α))wG

.

Set

Ew′G := hocolim
α

(E(α))wG

Then the diagram shows that we have a natural map

Et′G → Ew′G

which is compatible with the structure maps out of EhG. Furthermore,
the diagram shows that Et′G (Ew′G) is naturally weak equivalent to EtG

(resp. EwG) by a chain of weak equivalences preserving the structure
maps out of EhG.
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We now have a commutative diagram

Et′G −−−→ EhG −−−→ Et′G

y
∥∥∥

y

Ew′G −−−→ EhG −−−→ Ew′G

in which the rows are homotopy fiber sequences, the left vertical map
is the induced map of homotopy fibers, and the functors E 7→ Et′G and
E 7→ Ew′G commute with filtered homotopy colimits.

If E happens to be a finite G-spectrum, then the map Et′G → Ew′G

is a weak equivalence by the five lemma (since Et′G and Ew′G are
contractible in this instance, so the right vertical map of the diagram
is a weak equivalence, and therefore the left one is too). Let E now be
general. As E 7→ Et′G and E 7→ Ew′G commute with filter homotopy
colimits, and since E can be written up to weak equivalence as the
filtered homotopy colimit of finite G-spectra, it follows that the map
Et′G → Ew′G is a weak equivalence for every E. Another application
of the five lemma now shows that the map Et′G → Ew′G is a weak
equivalence for every E. This completes the proof of Theorem A. �

6. Proof of Theorem B

In this section we show that the norm map DG∧hG → EhG is an
assembly map for the homotopy fixed point functor E 7→ EhG. In §4
we defined a functor

Et′G := hocolim
α∈CsE

(E(α))hG ,

where E(α) denotes the homotopy cofiber of |α| : |Eα| → |sE|. More-
over, we showed that the natural map EhG 7→ Et′G coincides with
EhG → EtG in the homotopy category of functors (where EtG as usual
denotes the homotopy cofiber of the norm map).

Consequently, if we define

Et′G := hocolim
α∈CsE

(Eα)hG ,

it follows that the natural map

Et′G → EhG

coincides with the norm map in the homotopy category of functors. It
therefore suffices to show that the latter is an assembly map.

Let G(E)→ EhG be a natural transformation, where G is a homol-
ogy theory. If we define G′ to be the functor

G′(E) := hocolim
α∈CsE

G(Eα) ,
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then the evident natural transformation G′(E) → G(E) is a weak
equivalence. We also have an evident natural transformation G′(E)→
EhG, and the diagram

Et′G −−−→ EhG

x
x

G′(E)
∼
−−−→ G(E)

is commutative. But this implies that the natural map Et′G → EhG is
the universal left approximation to E 7→ EhG by a homology theory in
the homotopy category of functors. �

7. Variants

The norm map DG ∧hG E → EhG generalizes the classically defined
norm map EhG → EhG for finite groups G (it was shown in [Kl] that
DG ≃ S0 when G is finite). Thus for infinite groups, one has to replace
the homotopy orbit spectrum EhG by a twisted version DG∧hG E of it.

It is natural to ask whether it is possible to perform instead a mod-
ification of the codomain EhG to obtain a norm map whose domain is
EhG. We answer this in the affirmative below, as a special case of a
more general construction.

The idea of this more general construction is that one can precom-
pose the homotopy fixed point functor with a homology theory from
G-spectra to G-spectra. This yields another functor from G-spectra to
spectra.

Twisted fixed points. Suppose that W denotes a (G×G)-spectrum.
In order to distinguish between the two actions of G, we write G×G

as Gℓ×Gr, where Gℓ and Gr denote copies of G. Define the twisted
homotopy fixed point functor E 7→ EhW G from G-spectra to spectra by
the rule

E 7→ (W ∧hGℓ
E)hGr .

Using the yoga of §4-5, one obtains a norm (assembly) map

EtW G → EhW G

whose domain is the homotopy colimit

EtW G := hocolim
α∈CsE

(Eα)hW G .

Examples 7.1. We consider two special cases of the above. The first
recovers the norm sequence of [Kl], whereas the second gives a norm
map whose domain is the homotopy orbit construction.
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(1). If W = S0[G] (the suspension spectrum of G+), then EhW G ≃ EhG

and the norm map in this case is just

DG ∧hG E → EhG .

(2). Let W = Ŝ0[G] denote the function spectrum F (G+, S0) whose
j-th space is the space of stable maps G+ → Sj , with G×G acting via
its action on the domain.

Note that (S0[G])hW G ≃ S0. More generally, one has EhW G ≃ EhG

whenever E is G-finite. Using this identification, it is fairly straight-
forward to check that the domain of assembly map for the functor
E 7→ EhW G is just E 7→ EhG, i.e., the homotopy orbit construction.
The norm map in this example has the form

EhG → (Ŝ0[G] ∧hG E)hG .

The composite of the latter with the forgetful map (Ŝ0[G]∧hG E)hG →

Ŝ0[G] ∧hG E gives a transfer map

EhG → Ŝ0[G] ∧hG E .

If E is a finite G-spectrum and G is discrete, then the target of this
transfer map can be interpreted as “locally finite homology of E with
S0-coefficients.” This map is similar to a transfer map for infinite
(discrete) groups defined by Carlsson [Ca2] (the essential difference is
that the target of Carlsson’s transfer is locally finite homology with Z-
coefficients). Carlsson’s transfer has been used to verify the K-theory
Novikov conjecture for a wide class of groups [Ca1].
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