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Introduction

At the end of the last century, Poincaré discovered that the Betti numbers
of a closed oriented triangulated topological n-manifold Xn

bi(X) := dimRHi(X ; R)

satisfy the relation
bi(X) = bn−i(X)

(see e.g., [Di, pp. 21–22]). In modern language, we would say that there exists
a chain map C∗(X) −→ Cn−∗(X) which in every degree induces an isomorphism

H∗(X) ∼= Hn−∗(X) .

The original proof used the dual cell decomposition of the triangulation of
X . As algebraic topology developed in the course of the century, it became
possible to extend the Poincaré duality theorem to non-triangulable topological
manifolds, and also to homology manifolds.

In 1961, Browder [Br1] proved that a finite H-space satisfies Poincaré duality.
This result led him to question whether or not every finite H-space has the
homotopy type of a closed smooth (= differentiable) manifold. Abstracting
further, one asks:

Which finite complexes have the homotopy type of closed topological manifolds?
of closed smooth manifolds?

To give these questions more perspective, recall that Milnor had already
shown in 1956 that there exist several distinct smooth structures on the 7-
sphere [Mi1]. Furthermore, Kervaire [Ke] constructed a 10-dimensional PL
manifold with no smooth structure. It is therefore necessary to distinguish
between the homotopy types of topological and smooth manifolds. Kervaire
and Milnor [K-M] systematically studied groups of the h-cobordism classes of
homotopy spheres, where the group structure is induced by connected sum.
They showed that these groups are always finite. In dimensions ≥ 5 the h-
cobordism equivalence relation is just diffeomorphism, by Smale’s h-cobordism
theorem [Sm]).
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Since topological manifolds satisfy Poincaré duality (with respect to suitable
coefficients), the existence of a Poincaré duality isomorphism is a necessary
condition for a space to have the homotopy type of a closed manifold. Such a
space is called a Poincaré duality space, or a Poincaré complex for a finite CW
complex.

Poincaré complexes were to play a crucial role in the Browder-Novikov-
Sullivan-Wall surgery theory classification of manifolds. We can view the
surgery machine as a kind of descent theory for the forgetful functor from
manifolds to Poincaré complexes:

• Given a problem involving manifolds, it is often the case that it has an
analogue in the Poincaré category.
• One then tries to solve the problem in the Poincaré category, where

there is more freedom. In the latter, one has techniques (e.g., homotopy
theory) that weren’t available to begin with.
• Supposing that there is a solution to the problem in the Poincaré cate-

gory, the last step is to lift it back to a manifold solution. It is here that
the surgery machine applies. Except in low (co)dimensions, the only
obstruction to finding the lifting is given by the triviality of a certain
element of an L-group Ln(π).

Thus surgery theory gives an approach for solving manifold classification prob-
lems, modulo the solution of the corresponding problem for Poincaré complexes.

In general, a Poincaré duality space is not homotopy equivalent to a topo-
logical manifold. Thus Poincaré duality spaces fall into more homotopy types
than topological manifolds. In 1965, Gitler and Stasheff [G-S] constructed an
example of a simply connected finite complex X which satisfies 5-dimensional
Poincaré duality, but which isn’t the homotopy type of a closed topological
manifold. This example has the homotopy type of a complex of the form
(S2 ∨ S3) ∪ e5, with respect to a suitable attaching map S4 −→ S2 ∨ S3. More
specifically, X is the total space of a spherical fibration S2 −→ X −→ S3 which
admits a section. By the clutching construction, such a fibration is classified
by an element of π2(Aut∗(S

2)) ∼= π4(S
2) = Z/2. We take X to correspond to

the generator of this group.
Returning to Browder’s original question about finite H-spaces, it is worth

remarking that at the present time there is no known example of a finite H-
space which isn’t the homotopy type of a closed smooth manifold.

Outline. §1 concerns homology manifolds, which are mentioned more-or-less for
their historical interest. In §2 we define Poincaré complexes, following Wall.
I then mention the various ways Poincaré complexes can arise. §3 is an ode
to the Spivak normal fibration. I give two proofs of its existence. The first
essentially follows Spivak, and the second is due to me (probably). In §4 I
outline some classification results about Poincaré complexes in low dimensions,
and I also give an outline as to what happens in general dimensions in the highly
connected case. In §5 I describe some results in Poincaré embedding theory
and further connections to embeddings of manifolds. §6 is a (slightly impious)
discussion of the Poincaré surgery programs which have been on the market
for the last twenty five years or so. I’ve also included a short appendix on the
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status of the finite H-space problem. The bibliography has been extended to
include related works not mentioned in the text.

Acknowledgement. I am much indebted to Andrew Ranicki for help in research-
ing this paper. Thanks also to Teimuraz Pirashvili for help with translation
from the Russian.

1. Forerunners of Poincaré duality spaces

Spaces having the homological properties of manifolds have a history which
dates back to the 1930s, and are to be found in the work of Čech, Lefschetz,
Alexandroff, Wilder, Pontryagin, Smith and Begle. These ‘generalized n-
manifolds’ (nowadays called homology manifolds) were defined using the local
homology structure at a point. The philosophy at the time of their introduc-
tion was that these spaces were supposedly easier to work with than smooth
or combinatorial manifolds.

We recall the following very special case of the definition (for the general
definition and the relevant historical background see [Di, pp 210–213]). An
(ANR) homology n-manifold X is a compact ANR with local homology groups

H∗(X, X \ {x}) = H∗(R
n, Rn \ {0}) =

{
Z if ∗ = n

0 if ∗ 6= 0
(x ∈ X) .

Now, if our ultimate goal is to study the homotopy properties of manifolds,
this definition has an obvious disadvantage: it isn’t homotopy invariant. It is

easy to construct a homotopy equivalence of spaces X
≃
−→ Y such that X is a

homology manifold but Y is not a homology manifold. The notion of Poincaré
duality space is homotopy invariant, offering a remedy for the problem by
ignoring the local homology structure at each point. Any space homotopy
equivalent to a Poincaré duality space is a Poincaré duality space.

2. The definitions

There are several different flavors of Poincaré complex in the literature [Wa3],
[Wa4], [Le1], [Spi]. We shall be using Wall’s definition in the finite case, without
a Whitehead torsion restriction.

Suppose that X is a connected finite CW complex whose fundamental group
π = π1(X) comes equipped with a homomorphism w : π −→ { ± 1}, which we
shall call an orientation character. Let Λ = Z[π] denote the integral group ring.
Define an involution on Λ by the correspondence g 7→ ḡ, where ḡ = w(g)g−1 for
g ∈ π. This involution will enable us to convert right modules to left modules
and vice-versa. For a right module M , let wM denote the corresponding left
module. For a left module N , we let Nw denote the corresponding right module.

Let C∗(X̃) denote the cellular chain complex of the universal covering space

X̃ of X . Since π acts on X̃ by means of deck transformations, it follows that

C∗(X̃) is a (finitely generated, free) chain complex of right Λ-modules.
For a right Λ-module M , we may therefore define

H∗(X ; M) := H−∗(HomΛ(C∗(X̃), M))

H∗(X ; M) := H∗(C∗(X̃)⊗Λ
wM) .
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Given another right Λ-module N , and a class [X ] ∈ Hn(X ; wN) we also have
a cap product homomorphism

H∗(X ; M)
∩[X]
−−−→ Hn−∗(X ; M ⊗Z

wN)

where the tensor product M ⊗Z
wN is given the left Λ-module structure via

g · (x⊗ y) := xg−1 ⊗ gy (g ∈ π, x⊗ y ∈M ⊗ wN) .

With respect to these conventions, there is a canonical isomorphism of left
modules wΛ ∼= Λ⊗Z

wZ.

2.1. Definition. The space X is called a Poincaré complex of formal dimen-
sion n if there is a class [X ] ∈ Hn(X ; wZ) such that cap product with it induces
an isomorphism

∩[X ] : H∗(X ; Λ)
∼=
−→ Hn−∗(X ; wΛ) .

More generally, a disconnected space X is a Poincaré complex of formal dimen-
sion n if each of its connected components is.

We abbreviate the terminology and refer to X as a Poincaré n-complex. For
the rest of the paper, we shall be implicitly assuming that X is connected. If
the orientation character is trivial, we say that X is orientable, and a choice of
fundamental class [X ] in this case is called an orientation for X .

2.2. Remark. (1). Wall proved that the definition is equivalent to the assertion
that the cap product map

H∗(X ; M)
∩[X]
−−−→ Hn−∗(X ; wM)

is an isomorphism for all left Λ-modules M . In particular, taking M = Z,
we obtain the isomorphism ∩[X ] : H∗(X, Z) ∼= Hn−∗(X ; wZ) as a special case,
which amounts to the statement of the classical Poincaré duality isomorphism
when w is the trivial orientation character.

(2). Every compact n-manifold X satisfies this form of Poincaré duality.1 A
vector bundle η over S1 is trivializable if and only if

w1(η) = +1 ∈ H1(S1; Z2) = Z2 = {±1}.

The homomorphism w : π −→ {±1} is defined by mapping a loop ℓ : S1 −→ X to
+1 if the pullback of the tangent bundle of X along ℓ is trivializable and −1
otherwise.

(3). In Wall’s treatment of surgery theory [Wa4], the above definition of
Poincaré complex is extended to include simple homotopy information. This
is done as follows: the cap product homomorphism is represented by a chain

map C∗(X̃; Λ) −→ Cn−∗(X̃; wΛ) of finite degreewise free chain complexes of
right Λ-modules. One requires the Whitehead torsion of this chain map to be
trivial. In this instance, one says that X is a simple Poincaré n-complex. It
is known that every compact manifold has the structure of a simple Poincaré
complex.

1The standard picture of a handle in a manifold, with its core and co-core intersecting in a

point, has led Bruce Williams to the following one word proof of Poincaré duality: BEHOLD!
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2.3. Poincaré pairs. Let (X, A) be a finite CW pair. Assume that X
is connected. We assume that X comes equipped with a homomorphism
w : π1(X) −→ {±1}. We say that (X, A) is a Poincaré n-pair if there is a
class

[X ] ∈ Hn(X, A; wZ)

such that cap product with it induces an isomorphism

∩[X ] : H∗(X ; Λ)
∼=
−→ Hn−∗(X, A; wΛ) .

Moreover, it is required that ∂∗([X ]) ∈ Hn−1(A; wZ) equips A with the struc-
ture of a Poincaré complex, where the orientation character on A is the one
induced by the orientation character on X . Note, however, that in many im-
portant examples, A is not connected, even though X is.

2.4. Examples. We mention some ways of building Poincaré complexes.

Gluing. If (M, ∂M) and (N, ∂N) are n-manifolds with boundary or, more
generally, Poincaré pairs, and h : ∂M −→ ∂N is a homotopy equivalence, then
the amalgamated union M ∪h N is a Poincaré n-complex.

A special case of this is the connected sum X♯Y of two Poincaré complexes
Xn and Y n. To define it, we need to cite a result of Wall: every Poincaré
n-complex X has the form K∪Dn, where K is a CW complex and dim K < n;
this decomposition is unique up to homotopy (see 4.9 below). Converting the
attaching map Sn−1 → K into an inclusion Sn−1 ⊂ K̄, we see that (K̄, Sn−1)
is a Poincaré n-pair. Similarly, with Y = L∪Dn, we may define the connected
sum X♯Y to be K̄ ∪Sn−1 L̄.

Fibrations. Suppose that F → E → B is a fibration with F , E and B the
the homotopy type of finite complexes. Quinn [Qu2] has asserted that E is
a Poincaré complex if and only if F and B are. A proof (using manifold
techniques) can be found in a paper of Gottlieb [Got].

This result is important because it explains a wide class of the known ex-
amples of Poincaré complexes:

(1) The total space of a spherical fibration over a manifold.
(2) The quotient of a Poincaré complex by a free action of a finite group.

In a somewhat different direction, if a finite group G acts on a Poincaré com-
plex M , then the orbit space M/G satisfies Poincaré duality with rational
coefficients. This includes for example the case of orbifolds.

S-duality. Let K and C be based spaces, and suppose that

d : Sn−2 −→ K ∧ C

is an S-duality map, meaning that slant product with the homology class

d∗([S
n−2]) ∈ H̃n−2(K ∧C) induces an isomorphism in all degrees f : H̃∗(K) ∼=

H̃n−∗−2(C).
Let P : Σ(K ∧ C) −→ ΣK ∨ ΣC denote the generalized Whitehead prod-

uct map, whose adjoint K ∧ C −→ ΩΣ(K ∨ C) is defined by taking the loop
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commutator [iK , iC ] (Samelson product), where iK : K → ΩΣ(K ∨ C) and
iC : C → ΩΣ(K ∨ C) are adjoint to the inclusions (see [B-S, p. 192]).

The CW complex

X := (ΣK ∨ΣC) ∪P◦Σd Dn

is a Poincaré n-complex, with

∩[X ] =

(
0 ±f∗

f 0

)
: Hn−∗(X) = H̃n−∗−1(K)⊕ H̃n−∗−1(C)

∼= H∗(X) = H̃∗−1(K)⊕ H̃∗−1(C) (∗ 6= 0, n) .

(The proof uses [loc. cit., 4.6, 5.14]; see also 4.10 below). Spaces of this kind
arise in higher dimensional knot theory, where X is the boundary of a tubular
neighborhood of a Seifert surface V n ⊂ Sn+1 (i.e., the double V ∪∂V V of
(V, ∂V )) of a knot Sn−1 ⊂ Sn+1.

Given Xn as above, we can form a Poincaré (n+2)-complex Y n+2 by ap-
plying the same construction to the doubly suspended S-duality Σ2d : Sn →
ΣK ∧ΣC. Thus iterated application of the operation

(K, C, d) 7→ (ΣK, ΣC, Σ2d)

gives rise to a periodic family of Poincaré complexes. This type of phenomenon
is related to the periodicity of the high-dimensional knot cobordism groups.

3. The Spivak fibration

A compact smooth manifold Mn comes equipped with a tangent bundle
τM , whose fibres are n-dimensional vector spaces. Embedding M in a high
dimensional euclidean space Rn+k, we can define the stable normal bundle ν,
which is characterized by the equation

τM ⊕ νM = 0

in the reduced Grothendieck group of stable vector bundles over M . By iden-
tifying a closed tubular neighborhood of Mn in Rn+k with the normal disk
bundle D(ν), and collapsing its complement to a point (the Thom-Pontryagin
construction), we obtain the normal invariant2

α : Sn+k = (Rn+k)+
collapse
−−−−−→ Rn+k/(Rn+k − intD(νM ))

excision
−−−−−→

∼=
T (νM ),

in which T (ν) = D(νM )/S(νM ) is the Thom space of ν (here, S(νM ) denotes
the normal sphere bundle of νM ). The map α satisfies

U ∩ α∗([S
n+k]) = [M ] ,

2The use of this term in the literature tends to vary; here we have chosen to follow

Williams [Wi1].



POINCARÉ DUALITY SPACES 7

where U ∈ Hk(D(νM ), S(νM); Zt) denotes a Thom class for νM , in which the
latter cohomology group is taken with respect to the local coefficient system
defined by the first Stiefel-Whitney class of νM (i.e., the orientation character
of M).

The above relation between the normal invariant, the Thom class and the
fundamental class is reflected in an observation made by Atiyah. If p : D(νM )→
M denotes the bundle projection, then the assignment v 7→ (v, p(v)) defines a
map of pairs

(D(νM ), S(νM)) −→ (D(νM )×M, S(νM)×M)

which induces a map of associated quotients

T (νM ) −→ T (νM ) ∧M+ ,

where M+ denotes M with the addition of a disjoint basepoint. Composing
this map with the normal invariant, we obtain a map

Sn+k d
−→ T (νM ) ∧M+ .

3.1. Theorem. (Atiyah Duality [At]). The map d is a Spanier-Whitehead

duality map, i.e., slant product with the class d∗([S
n+k]) ∈ H̃n+k(T (νM )∧M+)

yields an isomorphism

H̃∗(T (νM )) ∼= H̃n+k−∗(M+) .

With respect to this isomorphism (or rather, taking a version of it with
twisted coefficients), we see that a Thom class U maps to a fundamental class
[M ] and the map is given by cap product with α∗([S

n+k]). Thus, the relation
U ∩ α∗([S

n+k]) = [M ] is a manifestation of the statement that the Thom
complex T (νM ) is a Spanier-Whitehead dual of M+.

The above discussion was intended to motivate the following:

3.2. Definition. Let X be a Poincaré n-complex with orientation character
w. By a Spivak normal fibration for X , we mean

• a (k−1)-spherical fibration p : E −→ X , and
• a map

Sn+k α
−→ T (p) ,

where T (p) = X ∪ CE denotes the mapping cone of p.

Moreover, we require that

U ∩ α∗([S
n+k]) = [X ] ,

where U ∈ Hk(p; Zw) is a Thom class for the spherical fibration p (here we are
taking the cohomology group of the pair (X ∪p E × I, E × 0) defined by the
mapping cylinder of p and the coefficients are given by the local system on X
defined by the orientation character w).

The map α : Sn+k −→ T (p) is called a normal invariant.
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3.3. Theorem. (Spivak). Every Poincaré n-complex X admits a Spivak nor-
mal fibration with fibre Sk−1, provided that k ≫ n. Moreover, it is unique in
the following sense: given two Spivak fibrations (E0, p0, α0) and (E1, p1, α1)
with respect to the same integer k, then there exists a stable fibre homotopy
equivalence

h : E1
≃
−→ E2

such that the induced map T (h) : T (p0) −→ T (p1) composed with α0 is homotopic
to α1.

Actually, Spivak only proves this in the 1-connected case, but a little care
shows how to extend to result to the non-simply connected case.

Let me now give Spivak’s construction. As X is a finite complex, we can
identify it up to homotopy with a closed regular neighborhood N of a finite
polyhedron in euclidean space Rn+k. Let p : E −→ X be the result of converting
the composite

∂N −→ N ≃ X

into a fibration. One now argues that the homotopy fibre of p is homotopy
equivalent to a (k−1)-sphere. To see this, we combine n-dimensional Poincaré
duality for X together with the (n+k)-dimensional Poincaré duality for (N, ∂N)
(the latter having trivial orientation character) to conclude that

H∗(X ; Λ) ∼= Hn−∗(X ; wΛ)

∼= Hn−∗(N ; wΛ)

∼= Hk+∗(N, ∂N ; (wΛ)e)

∼= Hk+∗(p; (wΛ)e) ,

where (wΛ)e denotes the effect of converting wΛ to a right module by means
of the trivial orientation character e(g) := 1.

Now, it is straightforward to check that this isomorphism is induced by cup
product with a class U ∈ Hk(p; Zw), so it follows that the fibration p : E −→ X
satisfies the Thom isomorphism with respect to twisted coefficients. However,
by the following, such fibrations are spherical fibrations.

3.4. Lemma. (Spivak [Spi, 4.4], Browder [Br4, I.4.3]). Suppose that p : E →
B is a fibration of connected spaces whose fibre F is 1-connected. Then F ≃
Sk−1, k ≥ 2, if and only if the generalized Thom isomorphism holds, i.e.,
there exists a class U ∈ Hk(p; Zw) (with respect to some choice of orientation
character w : π1(B) −→ {±1}) such that cup product induces an isomorphism

U∪ : H∗(B; Λ) −→ H∗+k(p; (wΛ)e) .

(The original proof of this lemma involves an intricate argument with spectral
sequences. For an alternative, non-computational proof see Klein [Kl1].)

To complete the proof of the existence of the normal fibration, we need to
construct a normal invariant α : Sn+k −→ T (p). By definition, T (p) is homotopy
equivalent to N/∂N , nd the latter comes equipped with a degree one map

Sn+k −→ N/∂N
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given by collapsing the exterior of N to a point. This defines α.

Observe that when X is a smooth manifold then the Spivak fibration E −→
X admits a reduction to a k-plane bundle with structure group O(k), i.e.,
the stable normal bundle of X . Similar remarks apply to PL and topological
manifolds. This observation gives the first order obstruction to a finding a
closed (TOP, PL or DIFF) manifold which is homotopy equivalent to a given
Poincaré complex: the normal fibration should admit a (TOP, PL or DIFF)
reduction.

We wish to illustrate the utility of this by citing a result from surgery theory.

3.5. Theorem. (Browder, cf. [Ra4, p. 210]). If X is a 1-connected Poincaré
complex of dimension ≥ 5, then X is homotopy equivalent to a closed topological
manifold if and only if the normal fibration for X admits a TOP-reduction.

As a corollary, we see that every finite 1-connected H-space of dimension
≥ 5 is homotopy equivalent to a topological manifold: the Spivak fibration in
this case is trivializable (cf. Browder and Spanier [Br-Sp]), so we may take the
trivial reduction.

3.6. An alternative approach. The above construction of the Spivak nor-
mal fibration required us to identify the Poincaré complex X with a regular
neighborhood of a finite polyhedron in Rn. From an aesthetic point of view, it
is desirable to have a construction which altogether avoids the theory of regular
neighborhoods. The following, which was discovered by the author, achieves
this. To simplify the exposition, we shall only consider the case when π1(X) is
trivial, and leave it to the reader to fill-in the details in the general case.

Let G be a topological group (which to avoid pathology, we assume is a
CW complex). Consider based G-spaces built up inductively from a point by
attaching free G-cells Dj∧G+ along their boundaries Sj−1∧G+. Such G-spaces
are the free, based G-CW complexes. We shall call such G-spaces cofibrant .

Given a cofibrant G-space Y , define the equivariant cohomology of Y by

H̃∗
G(Y ) := H̃∗(Y/G; Z)

where the groups on the right are given by taking reduced singular cohomology.
Similarly, we have the equivariant homology of Y

H̃G
∗ (Y ) := H̃∗(Y/G; Z) .

Given two G-spaces Y and Z, we can form their smash product Y ∧Z. Gives
this the diagonal G-action, and let Y ∧G Z denote the resulting orbit space.

3.7. Definition. Assume that π0(G) is trivial. A map of based spaces
d : Sm −→ Y ∧G Z is said to be an equivariant duality map if the correspondence
x 7→ x/d∗([S

m]) defines an isomorphism

H̃∗
G(Y )

∼=
−→ H̃G

m−∗(Z) .
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3.8. Remarks. (1). Another way of saying this is that the evident composite

Sm −→ Y ∧G Z −→ (Y/G) ∧ (Z/G)

is an S-duality map.

(2). Our definition is a dual variation of one given by Vogell [Vo], and the set-
up is similar to Ranicki [Ra1, §3] who defines an analogue for discrete groups.
If G is not connected, then the definition is slightly more technical in that we
have to take cohomology with Λ = Z[π0(G)]-coefficients.

Now, using a cell-by-cell induction (basically, Spanier’s exercises [Spa, pp.
462–463] made equivariant), one verifies that every finite cofibrant G-space Y
(i.e., which is built up from a point by a finite number of G-cells) has the
property that there exists a finite G-space Z and an equivariant duality map
Sm −→ Y ∧G Z for some choice of m≫ 0.

It is well-known that any connected based CW complex X comes equipped

with a homotopy equivalence BG
≃
−→ X , where G is a suitable topological group

model for the loop space of X (e.g., take G to be the geometric realization of the
underlying simplicial set of the Kan loop group of the total singular complex of
X). Here, BG denotes the classifying space of X . Let EG be the total space of
a universal bundle over X . Then EG is a free contractible G-space. Let EG+

be the effect of adjoining a basepoint to EG. Since BG is homotopy finite, it
follows that EG+ is the equivariant type of a finite cofibrant G-space. Hence,
there exists an equivariant duality map

Sm d
−→ EG+ ∧G Z := ZhG

for suitably large m, where ZhG := (EG×G Z)/(EG×G ∗) is the reduced Borel
construction of G acting on Z (note in fact that ZhG is homotopy equivalent
to Z/G since Z is assumed to be cofibrant).

In what follows, we assume that m≫ n =: dim X .

3.9. Claim. If BG has the structure of an n-dimensional Poincaré com-
plex, then Z is unequivariantly homotopy equivalent to a sphere of dimension
m−n−1.

Proof. Combining Poincaré duality with equivariant duality, we obtain an iso-
morphism

H̃m−n+∗(ZhG) ∼= H̃n−∗(BG+) ∼= H̃∗(BG+) .

One checks that this isomorphism is induced by cap product with a suitable

class U ∈ H̃m−n(ZhG). Now observe that up to a suspension, ZhG is the
mapping cone of the evident map

EG×G Z −→ BG

and it follows that ZhG amounts to the Thom complex for this map converted
into a fibration. It follows that the Thom isomorphism is satisfied, and we
conclude by 3.4 above that its fibre Z has the homotopy type of an (m−n−1)-
sphere.

To complete our alternative construction of the Spivak fibration, we need to
specify a normal invariant α. This is given by the duality map d : Sm −→ ZhG.
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4. The classification of Poincaré complexes

We outline the classification theory of Poincaré complexes in two instances:
(i) low dimensions, and (ii) the highly connected case. In (i), we shall see that
the main invariants are of Postnikov and tangential type, and ones derived from
them. In (ii), the Hopf invariant is the main tool.

4.1. Dimension 2. Every orientable Poincaré 2-complex is a homotopy equiv-
alent to a closed surface (see Eckmann-Linnell [E-L] and Eckmann-Müller [E-
M]). Surprisingly, this is a somewhat recent result.

4.2. Dimension 3. Clearly, Poincaré duality implies that a 1-connected
Poincaré 3-complex X is necessarily homotopy equivalent to S3.

Wall [Wa3] studied Poincaré 3-complexes X in terms of the fundamental
group π = π1(X), the number of ends e of π and the second homotopy group
G = π2(X). The condition that e = 0 is the same as requiring π to be finite.
It follows that the universal cover of X is homotopy equivalent to S3, so G is
trivial in this instance.

It turns out in this case that π is a group period 4, meaning that Z admits a
periodic projective resolution of Z[π] modules of period length 4. Wall showed
that the first k-invariant of X is a generator g of H4(π; Z) (the latter which is
a group of order |π|). The assignment X 7→ (π1(X), g) was proved to induce
a bijection between the set of homotopy types of Poincaré complexes and the
the set of pairs (π, g) with π finite of period 4 and g ∈ H4(π; Z) a generator,
modulo the equivalence relation given by identifying (π, g) with (π′, g′) if there
exists an isomorphism π −→ π′ whose induced map on cohomology maps g′ to
g.

In the case when e 6= 0, then π is infinite and X̃ is non-compact. If e = 1,

homological algebra shows that X̃ is contractible in this case, so X is a K(π, 1).
If e = 2, the Wall shows that X is homotopy equivalent to one of RP3♯RP3,

S1 ×RP2 or the one of the two possible S2-bundles over S1. This summarizes
the classification results of Wall for groups for π in which e ≤ 2.

In 1977, Hendriks [He] showed that the homotopy type of a connected
Poincaré 3-complex X is completely determined by three invariants:

• the fundamental group π = π1(X),
• the orientation character w ∈ Hom(π, Z/2), and
• the element τ := u∗([X ]) ∈ H3(Bπ; wZ) given by taking the image of

the fundamental class with respect to the homomorphism H3(X ; wZ) −→
H3(Bπ1(X); wZ) induced by the classifying map u : X −→ Bπ for the
universal cover of X .

Call such data a Hendriks triple.
Shortly thereafter, Turaev [Tu] characterized those Hendriks triples (π, w, τ)

which are realized by Poincaré complexes, thereby completing the classification.
For a ring Λ, let ho-modΛ be the category of fractions associated to the cat-
egory of right Λ-modules given by formally inverting the class of morphisms
0 → P , where P varies over the finitely generated projective modules. Call a
homomorphism M → N of right Λ-modules a P -isomorphism if it induces an
isomorphism in ho-modΛ.
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Set Λ = Z[π], where π is a finitely presented group which comes equipped
with an orientation character w : π −→ {±1}. Let I ⊂ Λ denote the augmenta-
tion ideal, given by taking the kernel of the ring map Λ −→ Z defined on group
elements by g 7→ 1. In particular, I is right Λ-module.

Choose a free right Λ-resolution

· · ·
d3−→ C2

d2−→ C1 −→ I −→ 0

of I, with C1 and C2 finitely generated. Let C∗ := homΛ(Ci, Λ) denote the
corresponding complex of dual (left) modules. Let J be the right module given
by taking the cokernel of the map

(C∗
1 )w (d∗

2
)w

−−−→ (C∗
2 )w .

Then Turaev shows that there is an isomorphism of abelian groups

A : homho-modΛ
(J, I)

∼=
−→ H3(π; wZ) .

4.3. Theorem. (Turaev). A Hendriks triple x := (π, w, τ) is realized by a
Poincaré 3-complex if in only if τ = A(t) for some P -isomorphism t : J → I.

4.4. Dimension 4. Milnor [Mi2] proved that the intersection form

H2(X
4)⊗H2(X

4) −→ Z

(or equivalently, the cup product pairing on 2-dimensional cohomology) de-
termines the homotopy type of a simply connected Poincaré 4-complex, and
that every unimodular symmetric bilinear form over Z is realizable. We should
perhaps also mention here the much deeper theorem of Freedman, which says
that the homeomorphism type of a closed topological 4-manifold is determined
by its intersection form and its Kirby-Siebenmann invariant (the latter is a
Z/2-valued obstruction to triangulation).

We may therefore move on to the non-simply connected case. It is well-
known that any group is realizable as the fundamental group of a closed 4-
manifold, and hence of a Poincaré 4-complex. Given a Poincaré 4-complex
X with fundamental group π, the obvious invariants which come to mind are
G := π2(X) and the intersection form on the universal cover, which can be

rewritten as φ : G × G −→ Z (since π2(X) = H2(X̃)); the group π acts via
isometries on the latter.

Wall [Wa3] studied oriented Poincaré 4-complexes X4 whose fundamental
group is a cyclic group of prime order p 6= 2. Wall showed under these assump-
tions that the homotopy type of X is determined by G and the intersection
form G × G −→ Z. However, when π is the group of order 2, this intersection
form is too weak to detect the homotopy type of X (see [H-K, 4.5]).

Hambleton and Kreck [H-K] extended Wall’s work to the case when π is a
finite group with periodic cohomology of order 4. To a given oriented X4, they
associate a 4-tuple

(π, G, φ, k)
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where π = π1(M), G = π2(M), φ : G × G −→ Z denotes the intersection form
and k ∈ H3(π; G) denotes the first Postnikov invariant of X . Such a sys-
tem is called the quadratic 2-type of X . Moreover generally, one can consider
all such 4-tuples, and define isometry (π, G, φ, k) −→ (π′, G′, φ′, k′) consist of
isomorphisms π ∼= π′ and G ∼= G′ which map φ to φ′ and k to k′.

4.5. Theorem. (Hambleton-Kreck). Let X4 be a closed oriented Poincaré
complex with π = π1(X) a finite group having 4-periodic cohomology. Then the
homotopy type of X is detected by the isometry class of its quadratic 2-type.

Notice that the result fails to identify the possible quadratic 2-types which
occur for Poincaré complexes. Bauer [Bauer] extended this to finite groups
π whose Sylow subgroups are 4-periodic. Teichner [Te] extended it to the
non-orientable case where a certain additional secondary obstruction appears.
Teichner also realizes the obstruction by exhibiting a non-orientable Poincaré
4-complex having the same quadratic 2-type as RP4♯CP2, but the two spaces
have different homotopy types. Thus Teichner’s secondary obstruction may be
non-trivial. Other examples in the non-orientable case were constructed by Ho,
Kojima, and Raymond [H-K-R].

Another approach to classification in dimension 4 is to be found in the works
of Hillman (see e.g., [Hill]).

We should also mention here the work of Baues [Baues] which a provides a
(rather unwieldy but) complete set of algebraic invariants for all 4-dimensional
CW complexes.

4.6. Dimension 5. The main results in this dimension assume that the fun-
damental group is trivial. Madsen and Milgram [M-M, 2.8] determined all
Poincaré 5-complexes with 4-skeleton homotopy equivalent to S2 ∨ S3. They
show that such a space is homotopy equivalent to one of the following:

(1) S2 × S3,
(2) S(η ⊕ ǫ2) = the total space of the spherical fibration that is given by

taking the fibrewise join of the Hopf fibration S3 η
−→ S2 with the trivial

fibration ǫ2 : S2 × S1 −→ S2, or
(3) the space given by attaching a 5-cell to S2 ∨ S3 by means of the map

S4 −→ S2∨S3 given by [ι2, ι3]+η2ι2, where [ι2, ι3] : S4 → S2∨S3 denotes
the attaching map for the top cell of the cartesian product S2×S3 (= the
Whitehead product), η2 : S4 −→ S2 denotes the composite Ση : S4 −→ S3

followed by η, and ι2 : S2 → S2 ∨ S3 denotes the inclusion.

The last of these cases is the Gitler-Stasheff example mentioned in the introduc-
tion, and hence fails to have the homotopy type of a closed smooth 5-manifold.
This can be seen by showing that the Thom space of the associated Spivak
normal bundle fails to be the Thom space of a smooth vector bundle.

Stöcker has completely classified 1-connected Poincaré 5-complexes up to
oriented homotopy type. To a given oriented X5, we may associate the system
of invariants

I(X) := (G, b, w2, e)

where

• G = H2(X),
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• b : T (G) × T (G) −→ Q/Z is the linking form for the torsion subgroup
T (G) ⊂ G,
• w2 ∈ Hom(G, Z/2) is the second Stiefel-Whitney class for the Spivak

fibration of X (which makes sense since Hom(π2(BSG), Z/2) = Z/2,
where the space BSG classifies oriented stable spherical fibrations), and
• e ∈ H3(X ; Z/2) ∼= G ⊗ Z/2 denotes the obstruction linearizing the

Spivak-fibration over the 3-skeleton of X (we are using here that the
map BSO → BSG is 2-connected, so a linearization always exists over
the 2-skeleton).

We remark that the first three of these invariants was used by Barden [Bar] to
classify 1-connected smooth 5-manifolds.

More generally, one can consider tuples (G, b, w2, e) in which G is a finitely
generated abelian group, b : T (G) × T (G) −→ Q/Z is a nonsingular skew sym-
metric form, w2 : G −→ Z/2 is a homomorphism and e ∈ G ⊗ Z/2 is an ele-
ment. The data are required to satisfy w2(x) = b(x, x) for all x ∈ T (G) and
(w2 ⊗ id)(e) = 0. It is straightforward to define isomorphism and direct sums
of these data, so we may define J to be the semi-group of isomorphism classes
of such tuples.

4.7. Theorem. (Stöcker [Sto]). The assignment X5 7→ I(X5) defines an
isomorphism between J and the semigroup of oriented homotopy types of 1-
connected Poincaré 5-complexes, where addition in the latter is defined by con-
nected sum.

Using a slightly different version of this, it is possible to write down a com-
plete list of oriented homotopy types of 1-connected Poincaré 5-complexes in
terms of ‘atomic’ ones and the connected sum operation (see [loc. cit., 10.1]).

4.8. The highly connected case. In “Poincaré Complexes: I”, Wall an-
nounces that the classification of ‘highly connected’ Poincaré complexes will
appear in the forthcoming part II. Unfortunately, part II never did appear. We
shall recall some of the homotopy theory which would presumably enter into a
hypothetical classification in the metastable range.

To begin with, it is well-known that a closed n-manifold can be given the
structure of a finite n-dimensional CW complex with one n-cell. The analogue
of this for Poincaré complexes was proved by Wall [Wa3, 2.4], [Wa4, 2.9] and
is called the disk theorem:

4.9. Theorem. (Wall). Let X be a finite Poincaré n-complex. Then X is
homotopy equivalent to a CW complex of the form L ∪α Dn. If n 6= 3 then L
can be chosen as a complex with dimL ≤ n−1 (when n = 3, L can be chosen
as finitely dominated by a 2-complex). Moreover, the pair (L, α) is unique up
to homotopy and orientation.

Suppose that X is a n-dimensional CW complex of the form (ΣK) ∪α Dn,
with K connected. We want to determine which attaching maps α : Sn−1 −→
ΣK give X the structure of a Poincaré complex. To this end, we recall the
James-Hopf invariant

πn−1(ΣK)
H
−→ πn−1(ΣK ∧K)
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which is defined using the using the well-known homotopy equivalence J(K)
≃
−→

ΩΣK, where J(K) denotes the free monoid on the points of K. In terms of this
identification, H is induced by the map J(K)→ J(K ∧K) given by mapping
a word

∏
i xi to the word

∏
i<j xi ∧ xj .

4.10. Theorem. (Boardman-Steer [B-S, 5.14]). Up to homotopy, the reduced
diagonal ∆: X → X ∧X factors as

X
pinch
−−−→ Sn ΣH(α)

−−−−→ ΣK ∧ΣK
⊂
−→ X ∧X ,

where the first map in this factorization is given by collapsing ΣK ⊂ X to a
point.

Since the slant product is induced by the reduced diagonal, we obtain,

4.11. Corollary. A map α : Sn−1 −→ ΣK gives rise to a Poincaré n-complex
X = (ΣK) ∪α Dn if and only if its Hopf invariant

H(α) : Sn−1 −→ ΣK ∧K

is a Spanier-Whitehead duality.

In particular, this result says that the complex K is self-dual whenever X is
a Poincaré complex (compare [Wa1, 3.8]).

Suppose now that we are given CW complex X = L ∪α Dn which (r−1)-
connected. If X is to be a Poincaré complex, then it would follow by duality
that L is homotopy equivalent to a CW complex of dimension ≤ n−r, so we
may as well assume this is the case to begin with. If we assume moreover that
n ≤ 3r−1 then the Freudenthal suspension theorem implies that L desuspends,
so we may write L ≃ ΣK, and X is then of the form ΣK∪αDn up to homotopy.
Hence the corollary applies in this instance. Lastly, if we assume that n ≤ 3r−2,
then K is unique up to homotopy.

The above result shows that it would be too optimistic to expect an algebraic
classification of Poincaré complexes in the metastable range (indeed, the clas-
sification of self-dual CW complexes in the stable range would probably have
to appear in any such classification). However, if we assume that we are at the
very beginning of the metastable range, i.e., n = 2r, then ΣK is homotopy
equivalent a wedge of r-spheres, say

ΣK =

t∨
Sr .

The Hilton decomposition [Hilt] can be used to write the homotopy class of α
in terms of summands and basic Whitehead products, i.e,

α =
t∑

j=1

βjιj ⊕
∑

1≤i<j≤t

γij[ιi, ιj ] ,
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where ιj : Sr → ΣK denotes the (homotopy class of) the inclusion into the
j-th summand, βj ∈ πn−1(S

r) is an element, [ιi, ιj ] ∈ πn−1(S
r ∨ Sr) denotes

the basic Whitehead product (= the attaching map S2r−1 → Sr ∨ Sr for the
top cell of Sr×Sr) and γij is an integer. Higher order Whitehead products do
not appear in this formula for dimensional reasons.

It follows that the data (βi, γij) is a complete list of invariants for X . If
ej denotes the Kronecker dual to the cohomology class defined by ιj , then the
cohomology ring for X is given by

ei ∪ ej :=





γij if i < j,

(−1)rγij if j < i,

H(βi) ∈ πn−1(S
n−1) = Z if i = j .

Therefore, the obstruction to X satisfying Poincaré duality is given by the
demanding that matrix (ei ∪ ej) be invertible.

For the classification (of manifolds) in the odd dimensional case n = 2r + 1,
see [Wa3].

5. Poincaré embeddings

The notion of Poincaré embedding is a homotopy-theoretic impersonation
of what one obtains from an embedding of actual manifolds. If a manifold X
is decomposed as a union

X = K ∪A C

where K, C ⊂ X are codimension zero submanifolds with common boundary
A := K ∩ C, then X stratifies into two pieces, with A as the codimension one
stratum and int(K ∐ C) as the codimension zero stratum. By replacing the
above amalgamation with its homotopy invariant analogue, i.e., the homotopy
colimit of K ←− A −→ C, we may recover X up to homotopy equivalence.

A Poincaré embedding amounts to essentially these data, except that we
do not decree the spaces to be smooth manifolds: the manifold condition is
weakened to the constraint that Poincaré duality is satisfied.

Specifically, suppose that we are given a connected based finite CW complex
Kk of dimension k, a Poincaré n-complex Xn and a map f : K −→ X . The
definition of Poincaré embedding which we give is essentially due to Levitt
[Le1].

5.1. Definition. We say that f Poincaré embeds if there exists a commutative
diagram of based spaces

A −−−−→ C

i

y
y

K −−−−→
f

X

such that

• the diagram is a homotopy pushout, i.e., the evident map from the
double mapping cylinder K × 0∪A× [0, 1]∪C × 1 to X is a homotopy
equivalence, and
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• the image of [X ] under Hn(X ; wZ) −→ Hn(i; f∗wZ) induced by the
boundary map in Mayer-Vietoris sequence of the diagram gives (K̄, A)
the structure of an n-dimensional Poincaré pair, where K̄ := K ∪A×0

A× [0, 1] denotes the mapping cylinder of i. Similary, [X ] makes (C̄, A)
into a Poincaré pair.
• The map i is (n−k−1)-connected.

The space C is called the complement.
The above definition applies when X has no boundary. If (X, ∂X) is a

Poincaré n-pair, then the definition is analogous, except that we require the
map ∂X −→ X to factor as ∂X −→ C −→ X .

The first condition of the definition says that X is homotopy theoretically
a union of K with its complement. The second condition says that the ‘strat-
ification’ of X is ‘Poincaré’. The last condition is essentially technical. In the
smooth category, it would be an automatic consequence of transversality (a
closed regular neighborhood N a k-dimensional subcomplex of an n-manifold
has the property that ∂N ⊂ N is (n−k−1)-connected), so the condition that
i be (n−k−1)-connected is imposed to repair the lack of transversality in the
Poincaré case. However, note when k ≤ n−3 that i is 2-connected if and only
if i is (n−k−1)-connected, by duality and the relative Hurewicz theorem.

We will assume throughout that we are in codimension ≥ 3, i.e., k ≤ n−3.

5.2. Remark. Suppose additionally that Kk has the structure of a Poincaré
k-complex. Then application of 3.4 above shows that the homotopy fibre of i is
homotopy equivalent to an (n−k−1)-sphere. Hence the map i in the definition
may be replaced by a spherical fibration. This recovers the notion of Poincaré
embedding given by Wall [Wa2, p. 113].

The following result, which has a ‘folk’ co-authorship, says that the descent
problem for finding locally flat PL-manifold embeddings can always be solved
in codimension ≥ 3. Moreover, the smooth version can always be solved in the
metastable range.

5.3. Theorem. (Browder-Casson-Sullivan-Wall [Wa2, 11.3.1]). (1). Suppose
that Kk and Xn are PL manifolds and that k ≤ n−3. Then f is homotopic to
a locally flat PL embedding if and only if f Poincaré embeds.

(2). If Kk, Xn are smooth manifolds with k ≤ n−3, then f : Kk −→ Xn is
homotopic to a smooth embedding if and only if f Poincaré embeds and, addi-
tionally, one of the following holds: (i) 2n ≥ 3(k+1), or (ii) f is homotopic to
a smooth immersion.

Thus, the problem of finding an embedding of PL-manifolds in codimen-
sion ≥ 3 has been reduced to a problem in homotopy theory. When can this
homotopy problem be solved?

A map Mm → Nn of manifolds with n ≥ 2m+1 is always homotopic to an
embedding, by transversality. It is natural to ask whether a similar result holds
in the Poincaré case. Fix a map f : Kk −→ Xn, where Kk is a k-dimensional
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CW complex, Xn is a Poincaré complex (possibly with boundary) and k ≤
n−3. According to Levitt [Le1], f Poincaré embeds when n ≥ 2k + 2 . One
would expect that the result holds in one codimension less, in analogy with
manifolds, but this isn’t known in general. However, Hodgson [Ho1] asserts
that f will Poincaré embed when n ≥ 2k + 1, with the additional assumptions
that K is a Poincaré complex and X is 1-connected. Both Hodgson and Levitt
used manifold engulfing techniques to arrive at these results.

Recently, the author [Kl2] proved a general result about Poincaré embed-
dings which implies the Levitt and Hodgson theorems as special cases:

5.4. Theorem. Let f : Kk −→ Xn be an r-connected map with k ≤ n−3.
Then f Poincaré embeds whenever

r ≥ 2k − n + 2 .

Moreover, the Poincaré embedding is ‘unique up to isotopy’ if strict inequality
holds.

(Two Poincaré embedding diagrams for f are called isotopic if they are
isomorphic in the homotopy category of such diagrams.)

In contrast with the engulfing methods of Levitt and Hodgson, the author
proves this result using purely homotopy theoretic techniques (a main ingredi-
ent of the proof is the Blakers-Massey theorem for cubical diagrams of spaces,
as to be found in [Good]).

An old question about Poincaré complexes is whether or not the diagonal
X → X ×X Poincaré embeds. As an application of the above, we have

5.5. Corollary. Let Xn be a 2-connected Poincaré n-complex. Then the di-
agonal X → X×X Poincaré embeds. Moreover, any two Poincaré embeddings
of the diagonal are isotopic whenever X is 3-connected.

It would be interesting to know whether or not the corollary holds with-
out the connectivity hypothesis. Clearly, the diagonal of a manifold Poincaré
embeds, by the tubular neighborhood theorem, so the existence of a diago-
nal Poincaré embedding for a Poincaré complex is an obstruction to finding a
smoothing.

5.6. Example. Let X be a finite H-space with multiplication µ : X×X → X .
Write X = X0 ∪ Dn using the disk theorem, and let α : Dn −→ X be the
characteristic map for the top cell of X . Consider the commutative diagram

X × Sn−1 id×α
−−−−→ X ×X0

∩

y
ys

X ×Dn d
−−−−→ X ×X

where the map s is given by (x, y) 7→ (x, µ(x, y)), and the map d is given by
(x, v) 7→ (x, xα(v)). Then the diagram is a homotopy pushout and, moreover,
the restriction of d to X ×∗ ⊂ X×Dn coincides with the diagonal. Hence, the
diagram amounts to a Poincaré embedding of the diagonal.
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5.7. Poincaré embeddings and unstable normal invariants. Another
type of question which naturally arises concerns the relationship between the
Spivak normal fibration and Poincaré embeddings in the sphere. Suppose
that Kk is a Poincaré complex equipped with a choice of spherical fibration
p : S(p) −→ K with fibre Sj−1. One can ask whether Kk Poincaré embeds in
the sphere Sk+j with normal data p. That is, when does there exist a space
W and an inclusion S(p) ⊂ W such that K ∪S(p) W is homotopy equivalent

to Sk+j? Obviously, if p isn’t a Spivak fibration then there aren’t any such
Poincaré embeddings. So the first obstruction is given by the existence of a
normal invariant Sk+j −→ T (p).

More generally, let Kk be a k-dimensional CW complex which is equipped
with a map g : A −→ K. Let K̄ be the mapping cylinder of g and assume that
(K̄, A) is an oriented Poincaré n-pair. We want to know when there exists a
Poincaré embedding of K in Sn with normal data A −→ K, i.e., when does
there exist an inclusion of spaces A ⊂ W such that K ∪A W is homotopy
equivalent to Sn? This problem specializes to the previous one by taking g to
be a spherical fibration.

Now, if the problem could be solved, then a choice of homotopy equivalence

Sn ≃
−→ K ∪A W gives rise to a ‘collapse’ map

Sn ≃
−→ K ∪A W ≃ K̄ ∪A W −→ K̄ ∪A ∗ = T (g)

where T (g) denotes the mapping cone of g : A −→ K. By correctly choosing our
orientation for (K̄, A), we may assume that this map is of degree one. This
prompts the following more general notion of normal invariant.

5.8. Definition. Given g : A −→ K as above together with an orientation for
(K̄, A), we call the homotopy class of any degree one map Sn −→ T (g) a normal
invariant.

The following result says that there is a bijective correspondence between
normal invariants and isotopy classes of Poincaré embeddings in the sphere
with given normal data in the metastable range. It was first proven by Williams
[Wi1], using manifold methods. A homotopy theoretic proof has been recently
given by Richter [Ri1].

5.9. Theorem. Suppose that 3(k + 1) ≤ 2n and n ≥ 6. Then Kk Poincaré
embeds in Sn with normal data g : A −→ K if and only if there exists a normal
invariant Sn −→ T (g). Moreover, any two such Poincaré embeddings of K
which induce the same normal invariants are isotopic provided that 3(k + 1) <
2n.

Richter [Ri2] has found some interesting applications of this result. For
example, he has shown how it implies that the isotopy class of a knot Sn ⊂
Sn+2 is determined by its complement X , whenever π∗(X) = π∗(S

1) for ∗ ≤
1/3(n + 2); this extends a theorem of Farber by one dimension.

6. Poincaré Surgery

Controversy seems to be one of the highlights of this subject, so to avoid
potential crossfire I’ll begin this section with a quote from Chris Stark’s math-
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ematical review [Stk] of the book Geometry on Poincaré spaces, by Hausmann
and Vogel [H-V]:

The considerable body of work on these matters is usually referred
to as “Poincaré surgery” although other fundamental issues such as
transversality are involved. These efforts involve several points of
view and a number of mathematicians—the authors of the present
notes identify three main streams of prior scholarship in their intro-
duction and include a useful bibliography. Because of technical dif-
ficulties and unfinished research programs, Poincaré surgery has not
become the useful tool proponents of the subject once hoped to deliver.

For the sake of simplicity, I shall only discuss the results found in [H-V],
which is now the standard reference for Poincaré surgery. We begin by ex-
plaining the fundamental problem of Poincaré surgery. To keep the exposition
simple, we only consider the oriented case.

6.1. Surgery. Quinn [Qu2] defines a normal space to be a CW complex
X equipped with an (oriented) (k−1)-spherical fibration pX : E −→ X and a
degree one map αX : Sn+k −→ T (pX), where T (pX) denotes the mapping cone
= Thom space of pX (here the integer k is allowed to vary). We define the
formal dimension of X to be n. Similarly, we have the notion of normal pair
(X, A).

A normal map of normal spaces from X to Y consists of a map f : X −→ Y

and an oriented fibre equivalence of fibrations b : pX
≃
−→ pY covering f such

that the composite

Sn+k αX−−→ T (pX)
T (b)
−−−→ T (pY )

coincides with αY . Note that the mapping cylinder of f has the structure of a
normal pair whose boundary is X ∐ Y . Similarly, there is an evident notion of
normal cobordism for normal maps.

The obvious example of a normal space is given by a Poincaré complex
equipped with Spivak fibration. The central problem of Poincaré surgery is to
decide when a given normal map f : X −→ Y of Poincaré complexes is normally
cobordant to a homotopy equivalence. Analogously, in the language of normal
pairs, one wants to know when a normal pair (X, A), with A Poincaré, is
normally cobordant to a Poincaré pair.

The algebraic theory of surgery of Ranicki [Ra1-2], [Ra3] associates to a
normal map of Poincaré complexes f : X −→ Y a surgery obstruction σ(f) ∈
Ln(π1(Y )) which coincides with the classical one if the given normal map comes
from a manifold surgery problem. The principal result of Poincaré surgery says
that this is the only obstruction to finding such a normal cobordism, i.e., that
the manifold and Poincaré surgery obstructions are the same. According to
Hausmann and Vogel, there are to date three basic approaches to Poincaré
surgery obstruction theory.

The first is to use thickening theory to replace a Poincaré complex with
manifold with boundary, so that we can avail ourselves of manifold techniques,
such as engulfing. This is the embodied in approach of several authors, in-
cluding Levitt [Le2], Hodgson [Ho6] and Lannes-Latour-Morlet [L-L-M]. One
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philosophical disadvantage of this approach is that, in the words of Browder,
“a problem in homotopy theory should have a homotopy theoretical solution”
[Qu1].

The second approach, undertaken by Jones [Jo1], also uses sophisticated
manifold theory. The idea here is to equip Poincaré complexes with the struc-
ture of a patch space, which a space having an ‘atlas’ of manifolds whose transi-
tion maps are homotopy equivalences, and having suitable transversality prop-
erties.

Lastly, we have the direct homotopy theoretic assault, which was first out-
lined by Browder and which was undertaken by Quinn [Qu1-3]. If a map
β : Sj −→ Xn is an element on which one wants to do surgery, then the homo-
topy cofiber X∪βDj+1 has the homotopy type of an elementary cobordism, i.e.,
the trace of the would-be surgery. Moreover, as Quinn observes, if the surgery
can be done then there is a cofibration sequence X ′ −→ X ∪β Dj+1 −→ Sn−j

where X ′ is the ‘other end’ of the cobordism. The composite map X ⊂
X ∪β Dj+1 −→ Sn−j is a geometric representative for a cohomology class which
is Poincaré dual to the homology class defined by β. Quinn’s idea [Qu3] is to
find homotopy theoretic criteria (involving Poincaré duality) to decide when a
map X ∪β Dj+1 −→ Sn−j extends to the left as a cofibration sequence, thus
yielding X ′.

Hausmann and Vogel point out that these three approaches are imbued with
a great deal of technical difficulty and none of them were completely overcome.
We pigeonhole the book of Hausmann and Vogel by placing it within the first
of these schools.

6.2. Poincaré bordism. Under this title belong the fundamental exact se-
quences of Poincaré bordism found by Levitt [Le2], Jones [Jo1] and Quinn
[Qu2]. Given a normal space X , we can let ΩP

n (X) denote the bordism group
of normal maps (f, b) : Y −→ X with X a normal space of formal dimension
n and Y a Poincaré n-complex, and where cobordisms are understood in the
Poincaré sense. Similarly, we can define ΩN

n (X) to be the bordism group of
normal maps (f, b) : Y −→ X . Then there is an exact sequence

· · · −→ Ln(π1(X)) −→ ΩP
n (X)

incl
−−→ ΩN

n (X) −→ Ln−1(π1(X)) −→ · · ·

and moreover, an isomorphism ΩN
n (X) ∼= Hn(X ; MSG), where the latter de-

notes the homology of X with coefficients in the Thom spectrum MSG whose
n-th space is the Thom space of the oriented spherical fibration with fibre Sn−1

over the classifying space BSGn.

6.3. Transversality. Let A be a finite CW complex and suppose that (D, S)
is a connected CW pair such that A includes in D as a deformation retract.
We also assume that the homotopy fibre of S ⊂ D is (k−1)-spherical. Given
an inclusion S ⊂ C, let Y denote the union D ∪S C. Roughly, we are thinking
of the Y as containing a ‘neighborhood thickening’ D of A in such a way that
the ‘link’ S of A in Y is a spherical fibration (up to homotopy).
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Let X be a Poincaré n-complex and let f : X −→ Y be a map. We say that f
is Poincaré transverse to A when (f−1(D), f−1(S)) and (f−1(C), f−1(S)) have
the structure of Poincaré n-pairs, and moreover, we require that the homotopy
fibre of the map

f−1(S) −→ f−1(D)

is also (k−1)-spherical.
Hence, if f is Poincaré transverse to A, we obtain a stratification of X as

a union of f−1(D) with f−1(C) along a common Poincaré boundary f−1(S).
Moreover, it follows from the definition that f−1(A) has the structure of a
Poincaré (n−k)-complex, so we infer that the inclusion f−1(A) ⊂ X Poincaré
embeds (with normal data f−1(S)).

The main issue now is to decide when a map f : X −→ Y can be ‘deformed’
(bordant, h-cobordant) so that it becomes Poincaré transverse to the given A.
The philosophy is that although one can always deform a map in the smooth
case to make it transverse, there are obstructions in the Wall L-groups for the
Poincaré case, and the vanishing of these obstructions are both necessary and
sufficient for Poincaré transversality up to bordism.

The algebraic L-theory codimension k Poincaré transversality obstructions
for k = 1, 2 are discussed in Ranicki [Ra3, Chap. 7]. Supposing in what follows
that k ≥ 3, Hausmann and Vogel provide a criterion for deciding when f can be
made (oriented) Poincaré bordant to a map which is transverse to A [H-V, 7.11].
They define an invariant t(f) ∈ Ln−k(π1(A)) whose vanishing is necessary and
sufficient to finding the desired bordism. If in addition f is 2-connected, then
t(f) is the complete obstruction to making f transverse to A up to homotopy
equivalence (i.e., Poincaré h-cobordism) [loc. cit., 7.23]). Assertions of this kind
can be found in the papers of Levitt [Le2],[Le4],[Le5], Jones [Jo1], and Quinn
[Qu2]. For a general formulation, see [H-V, 7.11, 7.14].

6.4. Handle decompositions. Given a Poincaré n-pair (Y, ∂Y ), and a
Poincaré embedding diagram

Sk−1 × Sn−k−1 −−−−→ C

∩

y
y

Sk−1 ×Dn−k −−−−→ ∂Y

we can form the Poincaré n-pair

(Z, ∂Z) := (Y ∪Dk ×Dn−k, C ∪Dk × Sn−k−1) ,

where Dk×Dn−k is attached to Y by means of the composite Sk−1×Dn−k −→
∂Y ⊂ Y and Dk × Sn−k−1 is attached to ∂Y by means of the map Sk−1 ×
Sn−k−1 −→ C. Call this operation the effect of attaching a k-handle to (Y, ∂Y ).
Note that there is an evident map Y −→ Z.

A handle decomposition for a Poincaré complex Xn consists of a sequence
of spaces

W−1 −→W0 −→ · · · −→ Wn
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(with W−1 = ∅) and a homotopy equivalence Wn
≃
−→ X . Moreover, each Wj is

the underlying space of a Poincaré n-pair with boundary ∂Wj in such a way
that Wj is obtained from Wj−1 a a finite number of j-handle attachments.
Handle decompositions are special cases of Jones’ patch spaces [Jo1].

6.5. Theorem. ( [H-V, 6.1]). If X is a Poincaré n-complex with n ≥ 5, then
X admits a handle decomposition.

6.6. Appendix: a quick update on the finite H-space problem

When Browder posed his question: Does every finite H-space have the ho-
motopy type of a closed smooth manifold?, it wasn’t known that there exist
1-connected finite H-spaces which are not the homotopy type of compact Lie
groups (except for products with S7 or quotients thereof; see Hilton-Roitberg
[H-R] and Stasheff [Sta, p. 22] for examples).

We remarked in §3 that every 1-connected finite H-space Xn has the homo-
topy type of a closed topological n-manifold. Browder [Br5] has noted in fact
that the manifold can be chosen as smooth and stably parallelizable if n isn’t
of the form 4k+2.

Using Zabrodsky mixing [Z] and surgery methods, Pedersen [Pe] was able
to extend Browder’s theorem to show that certain classes of finite H-spaces
(some with non-trivial fundamental group) have the homotopy type of smooth
manifolds. Recall that spaces Y and Z are said to have the same genus if
Y(p) ≃ Z(p) for all primes p, where Y(p) denotes the Sullivan localization of
Y at p. Among other things, Pedersen proved that when a finite H-space X
happens to be 1-connected and has the genus of a 1-connected Lie group, then
X has the homotopy type of a smooth, parallelizable manifold.

Weinberger [We] has settled the ‘local’ version of the problem: if P denotes
a finite set of primes, then a finite H-space is P -locally homotopy equivalent
to a closed topological manifold.

Using localization techniques and surgery theory, Cappell and Weinberger
[CW1] have shown that a finite H-space X has the homotopy type of a closed
topological manifold when π1(X) is either an odd p-group or infinite with at
most cyclic 2-torsion. In another paper [CW2] they show that X has the ho-
motopy type of a closed smooth parallelizable manifold whenever X(2) contains

a factor which is S7 or a Lie group, and moreover, π1(X) is either trivial, an
odd p-group or infinite with no 2-torsion. It is perhaps worth remarking that
all known examples of finite H-spaces are known to be of this kind.
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[Ho3] , Subcomplexes of Poincaré complexes, Bull. AMS 80 (1974), 1146–1150.
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