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Abstract. To a topological groups, we assign a naivé&-spectrumDg, called thedualizing
spectrum ofG. When the classifying spad®G is finitely dominated, we show thd; detects
Poinca¥g duality in the sense th&G is a Poincag duality space if and only b is a homotopy

finite spectrum. Secondly, we show that the dualizing spectrum behaves multiplicatively on certain
topological group extensions. In proving these results we introduce a new tawlmemapwhich

is defined for anyG and for any naiveG-spectrumk. Applications of the dualizing spectrum
come in two flavors: (i) applications in the theory of Poiredriality spaces, and (ii) applications

in the theory of group cohomology. On the Poiredtality space side, we derive a homotopy
theoretic solution to a problem posed by Wall which says that in a fibration sequence of finitely
dominated spaces, the total space satisfies Parthality if and only if the base and fiber do.
The dualizing spectrum can also be used to give an entirely homotopy theoretic construction of
the Spivak fibration of a finitely dominated Poineatiality space. We also include a new proof of
Browder’s theorem that every finit#-space satisfies Poin@aduality. In connection with group
cohomology, we show how to define a variant of Farrell-Tate cohomology for any topological or
discrete grougs, with coefficients in any naive equivariant cohomology theéryWhen E is
connective, and whe@ admits a subgrou@d of finite index such thaB H is finitely dominated,

we show that this cohomology coincides with the ordinary cohomology @fith coefficients

in E in degrees greater than the cohomological dimensiai .dh an appendix, we identify the
homotopy type ofDg for certain kinds of groups. The class includes all compact Lie groups,
torsion free arithmetic groups and Bieri-Eckmann duality groups.
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1. Introduction

In this paper the symbdaF will denote either the realization of a simplicial group
or a Lie group. Let
$°IG]

(the “group ring ofG over the sphere spectrum”) denote the suspension spectrum
of G, i.e., the spectrum whogeth space ig (S’ A (G)), whereQ is the stable
homotopy functor (here and elsewhefg, denotes the union @ with a disjoint
basepoint).
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Let G xG actonG by the rule(g, h) * x = gxh~t. This induces a left action
of GxG on S°[G].

Definition. The dualizing spectrunof G is the homotopy fixed point spectrum
of the subgrous = Gx1 C G xG acting onS°[G]:

D¢ = S[G]"C := F(EG,, S°[G])°*L.

This is aG-spectrum, whose action is given by restriction to the subgroup I
GxG.

We emphasize that this work will only employ thaivekind of equivariant
spectra (that is, the group doesn’t act on the suspension coordinates).

Motivation. In making this definition, we were prompted by a similar construc-
tion arising in the theory of group cohomology. Given a discrete gidwghose
classifying space is finitely dominated, one considers

Dr :=hompzry(Z, Z[T'])

where hom is taken internally within tioerived categorgf (left) Z[ I']-modules
(the homology of this complex is, of course, Ext (Z, Z[I'])). One callsD a
dualizing modulef it is isomorphic in the derived category to a complex which
is non-trivial in a single degreen and which in that degree is torsion free as an
abelian group (compare [Br4, Ch. VIII Th. 10.1]). M is a dualizing module,
thenBI" satisfies a version of Poin@duality in which the fundamental class
livesin H,(BG; Dr). Such groupg” are calledieri-Eckmann duality groups.

By analogy, our dualizing spectrum is given by replacing the disdrelsy
the (possibly) continuou§, and the integerZ by the sphere®:

D¢ = homy g6 (%, SU[G]),

where hom is now taken internally in the derived category of nGivepectra.

An important property of the dualizing spectrum is its ability to detect
Poincag duality in the classifying spadeG:

Theorem A. Assume thatBG is finitely dominated. Then the following are
equivalent:

1. BG is a Poinca€g duality space,
2. D¢ has the (unequivariant) weak homotopy type of a sphere,
3. D¢ is unequivariantly homotopy finite.

Furthermore, in(1) BG has formal dimensiom, if and only if in (2) D¢ is
a sphere of dimensionn, if and only if in (3) D has non-trivial spectrum
homology in degree-n.
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The implication 1« 2 is also due to Bill Dwyer (independently). Theorem
A will be proved in§5. In §10 (cf. Sect. 10 Ex. 1 and 10.5) we refine Theorem
A by identifying theequivariantweak homotopy type obg for those groups
having finitely dominated classifying space.

Remark 1.1.Any connected based spakecan be regarded up to homotopy as
BG for a suitable topological grou@ (takeG to be a topological group model
for the based loop space &j. Consequently, Theorem A characterizes the class
of Poinca¥g duality spaces.

Furthermore, if one regards the Borel construction

EGXGDG — BG

as a “family of spectra” parametrized by points®¢, then Theorem A shows
that this fibration stably spherical precisely whe@ is a Poincag space. We
show in Corollary 5.1 that the above is just the Spivak normal fibratioB@f

We therefore have a purely homotopy theoretic construction the Spivak normal
fibration.

Another feature of the dualizing spectrum is that it behawefiplicatively
with respect to certain kinds of extensions. Suppose that

1-H—->G—->0—->1
is an extension.

Theorem B. Assume either that

— the classifying spaceBH, BG and B Q are finitely dominated, or that
— BH is afinitely dominated Poincarspace.

Then there is a weak equivalence of spectra
Ds >~ Dg A DQ .

Actually, Theorem B can be made equivariant. Call a ma efpectra an
equivariant weak equivalendat induces an isomorphism on homotopy groups.
More generally, twaG-spectraX andY are equivariantly weak equivalent, writ-
tenX ~¢ Y, if there exists a finite zig-zag of such morphisms starting ith
and ending at .

Using the fact thatf is normal inG, it is possible to replac®y by a G-
spectrumD’, up to canonical weak equivalenceftspectra (cf. 2.6). Also, since
Q acts onD as well,G acts onD by restriction using the homomorphism
G — Q. Thus, we may giveD), A D, the associated diagon&taction.

Addendum C. With respect to the hypotheses of Theorem B, there is a weak
equivalence oG-spectraDg >~ Dy A Dy.
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The norm map. An important tool of this paper is the existence of a norm map
relating ‘invariants = group cohomology’ to ‘coinvariants = group homology.’

Theorem D. For any G-spectrumE, there is a (weak) map
D¢ Apg E — E"S

(natural in E) called the “norm map” which is a weak equivalence if one of the
following holds:

— G is arbitrary andE is G-finitely dominated in the sense thatitis a retract up
to homotopy of a spectrum built up from a point by attaching a finite number
of freeG-cells, or

— BG is finitely dominated and is arbitrary, or

— G isacompact Lie group anfi is an induced spectrum (in the sense that
has the equivariant weak homotopy type of a spectrum of theWomG ).

Conversely, assume thag(G) is finitely presented, and that the norm map is a
weak equivalence for all-spectra. TherBG is finitely dominated.

Remarks 1.21). The domain of the norm map is the homotopy orbit spectrum of
G acting diagonally orDg A E. The codomain of the norm map is the homotopy
fixed point spectrum of; acting onkE.

(2). To see how the norm map connects with Poiachrality, consider the case
whenE = HM is the Eilenberg-Mac Lane spectrum omr@ G)-module M.
If BG is finitely dominated, and ifDs is unequivariantly a sphere of fixed
dimension—n, say, then applying homotopy groups to the norm map gives an
isomorphism

H, «(G;Dc ® M) = H*(G; M),

whereDg denotesr_, (Dg). Butthis means tha G is a Poincag’duality space.
(This gives the 2= 1 implication of Theorem A.)

(3). AssumeBG is finitely dominated. Then the fact that the norm map is a
weak equivalence shows that taking homotopy fixed points with respegt to
commutes with homotopy colimits @f-spectra.

(4). The proof of Theorem D appears in Sect. 3, except in the instancedvisen
a compact Lie group an# is induced. The proof of the latter appears separately
in 10.2. It is a consequence of the identification in the compact Lie case that

S°[G] ~Gxc F(G,, S"9),

where the right side is a function spectrum of maps f@mto 9 = the sus-
pension spectrum of the one point compactification of the adjoint representation
of G.
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It should be true, although | haven't verified it, that our norm map in the
compact Lie case coincides with the norm map of Adem, Cohen and Dwyer
[A—C-D] and Greenlees and May [G—M].

The homotopy type of Dg. In the appendix, we identify the weak homotopy
type of the dualizing spectrum for various kinds of groups (sometimes it will be
possible to identify the weadquivarianthomotopy type). Here is the list of such
groups (in the following," always refers to a discrete group, whiecan be
either discrete or continuous;andicates that the weak equivariant homotopy
type is identified):

1. BG is a connected finitely dominated Poinealiality space

2. G is acompact Lie group

3. G is afinitely dominated topological group

4. I isadiscrete cocompact subgroup of a connected Lie group
5. I' =7Z*¢ is the free group og generators

6. I' = P, is the pure braid group am-strings

7. I’ =7y * 7, is the infinite dihedral group

8. I is atorsion free arithmetic grotip

9. I is a Bieri-Eckmann duality group

10. ' =Z4+7"

An application to group cohomology.The existence of the nhorm map enables
one to define a version of Farrell-Tate cohomology for an arbitrary group and an
arbitrary G-spectrum:

Definition 1.3. Let E'¢ be the homotopy cofiber of the norm map
D ANy E — EhG .

Define the generalized Farrell-Tate cohomologyolvith coefficients irE to be
the homotopy groups @¢:

E*(G) = n_,(E'%).

Remark 1.4.1f G is discrete and andif is aG-module then we recover the case

of Tate cohomology by takindg = HM (the Eilenberg-Mac Lane spectrum

of M). More generally, Farrell-Tate cohomology theory is defined wieis

discrete and has finite virtual conomological dimension (cf. [Br4, Ch. X]).
Inanother paper [KI1] we will show that the homotopy groups of the cofiber of

the norm map coincide with the Farrell-Tate groups in two instances: (a) When

G is finite (i.e., the Tate case), or (b) whah admits a finite type projective

resolution ovefZ[G].

By the Theorem DE*(G) = 0 if BG is finitely dominated. What happens
if G has a subgroupl of finite index such thaB H is finitely dominated? The
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following result shows that in high degrees one recovers the group cohomology
of G with coefficients in the spectrud. Define E*(G) to ber_,(E"°). Then

Theorem E. Assume thak is connective (i.e(—1)-connected). Suppose that
G admits a subgrou of finite index such that

— BH is finitely dominated.
— H*(BH; M) = 0for x > n and any local coefficient bundle on BH.

Then there is an isomorphism
E*(G) Z E*(G) if*>n.

If G is discrete, then in the language of group cohomology, the hypotheses
of the theorem amount to saying tha@tis VFP and has virtual cohomological
dimension< n. In the classical situation whefi = HZ andG is discrete, the
theorem specializes to one of the well-known properties of Farrell-Tate coho-
mology.

Applications to Poincaré duality spaces.Suppose that’ —- E — B is a
fibration of connected, finitely dominated spaces. Choose a basepoift for
Applying a suitable group model for the loop space, we obtain an extension of
topological groups

1> QF > QE — 2B — 1.

(Details: let$2.E and £2.B denote the Kan loop groups of the total singular
complex of E and B. Define2.F to be the kernel of the onto homomorphism
2.E — $2.B. Then apply realization.)

Since the smash product of two spectra is weak equivalent to the sphere
spectrum if and only if each constituentig, follows that Dy, 5 is a sphere if
and only if Do and D, 5 are spheres. Applying Theorem B, we have

Corollary F. With respect to the above assumptiofsis a Poincag space if
and only if F and B are.

The corollary has a history. C.T.C. Wall first posed the statement as a question,
and a solution was announced by Quinn (unpublished, but see [Qu2]). A proof
involving manifold techniques was first published by Gottlieb [Go]. The present
proof is homotopy theoretic.

Suppose thak C R" is the compact regular neighborhood of a connected
finite polyhedron. Assume that the spineXvhas codimensior 3 (this can be

1 Proof: SupposethaX AY ~ s9, and thafX andy are CW¢2-spectra. By the Kiineth formula,
itis sufficient to show thak andY are homotopy finite spectra. Since we have a weak equivalence
of hom-spaces hofiX, —) ~ hom(s%, ¥ A —), we may infer that horfiX, —) commutes with
colimits. If we writeX as a colimit of finite CW spectra, it follows that the identity magXdactors
up to homotopy through some finite spectrum. We infer ghig homotopy finite. Similarly, so is
Y. I wish to thank T. Goodwillie and S. Schwede for showing me this argument.
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arranged, if necessary, by embeddiion a higher dimensional euclidean space).
Let F denote the homotopy fiber of the inclusion of the boundaXy — X.
Sinced X is a closed manifold, we have

Corollary G. The space satisfies Poincarduality if and only ifF’ is homotopy
finite.

The ‘if’ part follows directly from Corollary F, whereas the ‘only if’ part
is well-known. In fact,F has the homotopy type of a sphere in this instance.
Furthermore, this is the procedure that is usually employed to construct the
Spivak fibration (see e.g., [Brl, 1.4.1] which relies on [Br1, 1.4.3]; for another
kind of proof of the latter, see [KI2]).

Another application of the dualizing spectrum is a new proof of an historically
important theorem of W. Browder [Br2] concerning fintespaces (whereH -
space’ now means ‘Hopf space’ = space with multiplication up to homotopy):

Theorem H. A connected finitely dominateéfl-space satisfies Poincaduality.

Note: Browder asserted this only for finifg-spaces and for Poinaaduality

with Z-coefficients, so we are actually asserting more. The idea of the new proof
runs as follows: ifX is a finitely dominatedd-space, then we shall prove that
the dualizing spectrum of (a topological group model for) its loop spgade

is unequivariantly homotopy finite. Then the claim thats a Poincag duality
space follows from Theorem A.

Observe the similarity of Addendum C with what happens in the smooth
case: ifp: E — B is a smooth submersion of compact manifolds, then we have
the splittingzz = ti° @ p*zz wheret[P is the tangent bundle along the fibers.
Equivalently, in terms of stable normal bundigs= v & p*vg. This last fact
is the analogue of our addendum if we regérg together with itsG-action as
an object akin to the stable normal bundle. This connection will be made precise
in 5.1 and in Sect. 10. In the case of Poirecapaces, we will prove:

Theorem|. Let F — E — B be a fibration of connected finitely dominated
spaces. If£ is a Poincag space then its Spivak fibratiog has the stable fiber
homotopy type of a fiberwise join

Vfiwb *p P VB,
wherevjlb is a certain prolongation of the Spivak fibration Bfto a spherical

fibration overE and p*vg denotes the pullback of the Spivak fibrationBofo
E.

Yet another consequence of our machinery is a result which says fibrations of
connected finitely dominated spaces admit fiberwise Pogrsjzace thickenings:
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Theorem J (Fiber Poincae Thickening)Let F — E — B be a fibration of
connected finitely dominated spaces. Then there is a fibration pair

(F',dF') — (E', Ey) — (B, B)

such thatF’ — E’ — B is fiber homotopy equivalentt6 — E — B and
(F’, 9F") is a Poincag space.

A note on methods.This paper relies heavily on the paper [KI5]. The proofs of
the results listed above are homotopy theoretic. There is only one place in the
paper where a manifold argument appears: in the appendix, in order to identify
the dualizing spectrum of a compact Lie group, we use the exponential map (cf.
10.1). This result is then used to show that the norm map is a weak equivalence
for induced spectra (cf. 10.2).

Outline.Section 2 is primarily language and basic homotopy invariant construc-
tions which can be applied to equivariant spectra. Section 3 is about the proof
of Theorem D. In Sect.4, we prove Theorem B and Addendum C. Section 5
contains the proof of Theorem A. In Sect. 6 we prove Theorem H. The proof of
Theorem | is in Sect. 7. In Sect. 8 we prove Theorem J, a3 ine prove The-
orem E. Section 10 is the appendix, in which we identify the dualizing spectrum
of different kinds of groups, and end the discussion with a problem, a question
and a conjecture.

Acknowledgements.would like to thank Tom Goodwillie, Randy McCarthy and Andrew Ranicki
for suggestions that lead to improvements in the exposition. Thanks also to Ross Geoghegan, who
told me where to look in the literature to find answers to some of my questions.

| originally thought of the dualizing spectrum as a gadget assigned to a topological space (i.e.,
X — Dgx). | am grateful to Greg Arone, who suggested that my norm map should be related
to the classical norm map in the compact Lie case. Although his suggestion is not verified in this
paper, it did lead to thinking of the dualizing spectrum as a gadget assigned to a topological group.
The latter point of view turned out to be ultimately the more fruitful one.

2. Preliminaries

SpacesAll spaces below will be compactly generated, diogh will denote the
category of compactly generated spaces. In particular, we make the convention
that products are to be retopologized with respect to the compactly generated
topology. LetTop. denote the category of compactly generated based spaces.
A weak equivalencef spaces is shorthand for (a chain of) weak homotopy
equivalence(s). A weak equivalence is denoted-bywhereas, we often write
chains of weak equivalences using(the same notation will be used when
discussing weak equivalences of spectra). A spaberisotopy finitét is weak
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equivalent to a finite CW complex. It ffnitely dominatedf it is a retract up to
homotopy of a finite CW complex.

Homotopy colimits of diagrams of spaces are formed by applying the total
singularization functor, taking the homotopy colimit of the resulting diagram of
simplicial sets (as in [B—K]) and thereafter applying the realization functor.

If X is a connected based space, we associate a topological group@bject
of Top as follows: letS. X denote the simplicial total singular complexXfand
let G. denote its Kan loop group. Defir@to be the geometric realization of the
underlying simplicial set of;.. The assignmenX — G is a functor. Moreover,
there is a functorial chain of weak homotopy equivalences conneBitihtp X .

Remark 2.1.In this paper a “topological group” always means either: (i) the
realization of a simplicial group, or (ii) a Lie group.

Poincaré spacesA spaceX is aPoincar duality spacef (formal) dimension

n if there exists a bundle of coefficients which is locally isomorphic tdZ,
and a fundamental cla$X] € H,(X; £) such that the associated cap product
homomorphism

N[X]: H*(X; M) — H, .(X; L ® M)

is an isomorphism in all degrees. Heié¢,denotes any bundle of coefficients.

Usually, Poincag’spaces are implicitly understood to have some sort of finite-
ness condition imposed upon them. For the most part, we shall assunmeighat
a finitely dominated CW complex.

More generally, a CW paitX, 0X) is a Poinca® pair of dimensionn if
there exists a bundle of coefficienfswhich is locally isomorphic t&, and a
fundamental clasgX] € H,(X, dX; £) such that the associated cap product
homomorphism

NIX]: H*(X; M) — H,_.(X,3X; L® M)

is an isomorphism in all degrees for all local coefficient bundigsand fur-
thermore d.[X] € H,_1(3X; L5x) equipsd X with the structure of a Poincar”
duality space. See [Wa2] or [Wa3] for more details.

Spectra.A spectrumwill be taken to mean a collection of based spaces; n
together with based mapsX; — X;,1 where X' X; denotes the reduced sus-
pension ofX;. A map of spectraX — Y consists of mapX; — Y; which are
compatible with the structure maps.

Let G be atopological group. fnaive)G-spectrunconsists of a spectruixi
such that eacly; is a based (left{s-space and each structure max; — X,
is equivariant, where the action 6f on X X; is defined so as to act trivially on
the suspension coordinate.
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Homotopy groups are defined in the usual way. Maps pectra are maps
of spectra that are compatible with teaction. LetSp® denote the category
of these. One way to obtain @-spectrum is to take a basé&gtspaceX and
form its suspension spectrum™ X ; the j-th space of the latter i©(S/ A X),
whereQ = 2% X s the stable homotopy functor. In particul&P[G] is the
suspension spectrum 6f, .

A weak equivalencef G-spectra is a morphism inducing an isomorphism
on homotopy groups. Weak equivalences are indicatedShyand we say that
two G-spectraX andY areweak equivalentwvritten X >~ Y, if there is a finite
chain of weak equivalences, startingéataind terminating ar .

A map of spectra ig-connectedf it induces a surjection on homotopy up
through degree and an isomorphism in degrees less thaA spectrum is--
connected if the map to the trivial spectrum (consisting of the one point space
in each degree) igr+1)-connected. A spectrum isounded belowf it is r-
connected for some

S. Schwede has shown that the above notion of weak equivalence arises from
a Quillen model category structure &p° (cf. [Sc]). In this model structure, a
fibrant object is aG-spectrumX which is ang2-spectrum: the adjoink,, —
2X,.1 to the structure maps are weak homotopy equivalencesofforant
object is (the retract of) &-spectrumX such thatX,, is built up from a point by
attachingreeG-cells (i.e.,D" x G), moreover, the structure mapsX,, — X, 1
are given by attaching fre@-cellsto X' X,,.

Any G-spectrumX has a (functorialfofibrant approximationthere exists
a cofibrantG-spectrumX® and a weak equivalence® — X (in fact X° can
be constructed by the usual procedure of killing homotopy groups). Similarly,
X has a (functorialjibrant approximationthere exists a fibrarG-spectrumx’
and a weak equivalence — X (this can be constructed by taking to be the
homotopy colimit hocolims2/ X, ;.)

Generally, we will assume that the collection of spaces describigy a
spectrum are CW complexes. If the resHltof a construction onX fails to
have this property, we apply the functfy — |S.Y,|, the realization of the sin-
gularization functor. The result gives@spectrum which is degreewise a CW
complex.

Smash products and functions with spacedf U is aG-space an is aG-
spectrum, the® A X will denote theG-spectrum which in degregis the smash
productU A X; provided with the diagonal action. This has the correct homotopy
type if the underlying space df is a CW complex. (Here and elsewhere, we
say that a construction gives the “correct homotopy type” if it respects weak
equivalences. Thus, the functgr— U A X respects weak equivalences whose
domain and codomain are CW complexes.)
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Give U A X the diagonatG-action. Then we can from trerbit spectrum
UngX

given by takingG-orbits degreewise. In general, the latter has the correct homo-
topy type ifU is a based;-CW complex which is free away from the basepoint.

Similarly, we can form the function spectruR(U, X) which in degregj is
given by F (U, X;) = the function space of unequivariant based maps ftobm
to X;. An action of G on F (U, X) provided by conjugation (i.e(g * f)(u) =
gf(g tu) for g € Gand f € F(U, X;)). In general, forF (U, X) to have the
correct homotopy type, it is necessary to assume Xhe fibrant and that the
underlying space df/ is a CW complex.

Let

F(U, X)¢

denote thdixed point spectruraf G acting onF (U, X), i.e., the spectrum whose
Jj-th space consists of the equivariant functions fronto X ;. The fixed point
spectrum has the correct homotopy typ«ifs fibrant andU is a based;-CW
complex which is free away from the base point.

In what follows below we sometimes abuse notatioiX: fails to be fibrant
(but U is a basedG-CW complex which is free away from the basepoint), we
take F (U, X)° to meanF (U, XH¢.

Smash products of equivariant spectraWe will not require internal smash
products of spectra which astrictly associative, commutative and unital. How-
ever, we will require that these have been defined so adtorbhetopyassociative,
commutative and unital.

In particular, a naive type construction will suffice for our purposeX: i§
a G-spectrum and it is an H-spectrum therX A Y is the (G x H)-spectrum
whose(2n)-th space isX,, A Y, and whose2n+1)-st space isX,,,1 A Y. If
H = G, thenG acts diagonally oiX A Y. We can then form the associatebit
spectrumX Ag Y. This has the correct homotopy type provided tkiabr Y is
cofibrant.

SupposeX, Y andZ are spectra, and that we are given m@ps X; A Y; —
Z;+; compatible with the structure maps ®f ¥ andZ. Then we obtain a map
of spectraX A Y — Z.

Homotopy orbits and homotopy fixed points.If X is a G-spectrum then the
homotopy orbit spectruni’¢ is the (non-equivariant) spectrum given by

X/\G EG+,

where EG is the free contractibl&-space (arising from the bar construction),
andEG, is the result of adding a basepointfd;.
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Thehomotopy fixed point spectrukt“ is given by
F(EG4, X)C.

(recall that our conventions specif( EG ., X)¢ to meanF (EG,, X")¢ when-
everX fails to be fibrant).

Lemma 2.2. Let X be a bounded belo@w-spectrum. For an¥.[7o(G)]-module
M, let HM denote the corresponding Eilenberg-Mac Lane spectrum, @ith
acting by means of the homomaorphiém— 7o(G).

Suppose that the homotopy orbit spectrum

X Apg HM
is r-connected for everyf. ThenX is r-connected.

Proof. Firstassume thaft is connected. Itis shownin [KI2, Lemma 1.3] tha@if
is connectedX is bounded below an#, ; is weakly contractible, theH is also
weakly contractible. In proving this we actually showed the stronger statement
that if X, is r-connected, theX is r-connected. The Hurewicz theorem (for
bounded below spectra) shows tlat; isr-connected iX A HZ isr-connected.
This gives the result whefi is connected.

WhenG isn’t connected, we can reduce to the connected situation as follows:
notice thatX A, HM coincides up to homotopy witKi,, Anoc) HM, where
Gy is the kernel ofG — 7o(G). TakeM to beZ[rg(G)]. It follows that(HZ A
X)ne, isr-connected. Bulg is connected. Therefor¢Z A X is alsor-connected
by the previous paragraph. The Hurewicz theorem now enables one to conclude
that X is r-connected. O

Homotopy invariance of Dg. Suppose thatl. — G. is a monomorphism of
simplicial groups. Taking realization we get a closed monomorptism G
of topological groups. Thefg is also anH-spectrum by restriction.

Lemma 2.3. With respectto the above hypotheses, assume in additioAthat
G induces an isomorphism on homotopy groups. Then there is an equivariant
weak equivalence

Dy ~yg Dg.

Proof. Note thatEG also serves as a model f@éH. The equivariant weak
equivalence of dualizing spectra is given by the chain

F(EG., S°[G)° =X F(EG., SlG)Y &L F(EG., S°THD! .

where the first map is the inclusion of-fixed sets intoH -fixed sets and the
second map is induced by the inclusist{H] — S°[G]. O
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Induced spectra.Let H — G is ahomomorphism, and I&tbe anH -spectrum.
Then one may form thenduced spectrunthe G-spectrum given by

X ANH G+ ,
where the action in degregis defined by

gx(x,y) = (x,yg™h,

withg € G,y € G4, x € X;.
Now assume thall C G is the closed inclusion of a normal subgroup. Let
QO = G/H. If X happens to be &-spectrum to begin with, then the induced
spectrumX Aypy G, comes equipped withiG x Q)-action: the action oD is
defined by
kx(x,y) = (lgx, 12)/)

forke Q,x e Xj,y € G+ andk € G denoting any representative lift 6f
Forg € G, letg € Q denote its image. Let € G act onQ, by the rule
g*x = x(g)~L If Zis aG-spectrum, giveZ A Q. the associated diagonal
action.
The following is probably well-known.

Lemma 2.4. Assume thak is a G-spectrum. Then there is a weak equivalence
XAug Gy ~gx0 XNQ4.
In particular, takingH = G, there is a weak equivalence
XAgGy ~¢ X.
Proof. If Y is aG-space then there is an homeomorphisniredpaces
YAu Gy = YAQ,

defined by(y, g) — (g~1y, g). This map of spaces extends to the spectrum level
to define the equivalence. O

Coinduced spectra.lf H C G is a closed subgroup, arid is a (fibrant)H-
spectrum, then we can form tli&spectrum

F(Gy, E)

This is the effect otoinducingE with respect to the inclusioH — G. G acts
onF (G, E) by (g * ¢)(x) = ¢ (g x), whereg € G and¢: G — E;.
If G/H is discrete, the (G, E)f can be rewritten as the cartesian product

[TE-

G/H
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Similarly, the induced spectrui Ay G, may be rewritten as a wedge
\VE.
G/H

Now if H has finite index inG, it follows that the inclusion of the wedge into
the product is a weak equivalence. Consequently, there is an equivariant weak
equivalence

EAy Gy ~g F(G,, E)

provided thatH has finite index inG (compare with the ‘linear analogue’ [Br4,
Prop. 5.9)).

Lemma 2.5. Suppose thall C G has finite index. Then there is an unequivari-
ant weak equivalence
Dy ~ Dg.

Proof. We have
Dg = F(EG,, S°[G)® ~ F(EG.,S°[H] Ay G)C.

Replacing the induced spectrus¥[H] Ay G, by the coinduced spectrum
F(G,, SOTH])" we obtain

D¢ ~ F(EG,, F(Gy, S°[TH])™)C .
Taking the adjunction, we have that
F(EG,, F(G,,S°[H)™)C = F(EG,. A Gy, SPTH))HC .

Note thatH acts only on the5, factor of EG, A G, whereasG acts diago-
nally. The second factor projectiadG, A G, — G, is therefore 4G x H)-
equivariant weak equivalence. B@t, isn't (G x H)-free; we can make itG x
H)-free at the expense of smashing wili/ . (with the trivial G-action and the
usualH-action). This entitles us to repladdG . A G, with EH, A G inthe
function spectrum. Consequently,

Dg =~ F(EH, A Gy, STHD"C = F(G,, F(EH,, SYTH)")Y = Dy

Extending the action.Let
1-H—->G—->0—->1

denote an extension.
Consider the restriction map

H

Dy = F(EH,, S°lH)! & F(EG,,S[H])" := D),
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which is induced by inclusio H — EG. SinceEG . is aG-space, we can let
G act onD’, by means of the formula

gx¢ = (s> gp(g g™ H,

whereg € G, ¢ € F(EG,, Q(S/ A H.))" ands € EG,.

This requires some explanatiof: acts onQ(S/ A H,) by conjugation on
H (this makes sense, sinégis normal inG). Moreover, notice that ig € H,
then theH -equivariance op gives

gxd = (> d)egh.

Consequently, thé-action we have defined dy, actually extends the naturally
given H-action. Summarizing, we have

Lemma 2.6. The mapD},, — Dy of H-spectra is a weak equivalence. More-
over, theH -action onDj}, extends to &-action in a canonical way.

3. The norm map

In this section we prove Theorem D, except in the case whena compact Lie
group andE is induced. That case is handled separately in 10.2 below.

Construction of the norm map. The task is to construct a weak map
D¢ Awg E — E"C

which is natural inE. By applying fibrant and cofibrant replacementdpwe
can assume without loss in generality thats fibrant and cofibrant. Then it
suffices to define a map

D Ag E — E"

(where the domain now has orbits instead of homotopy orbits).

Recall once again thaP[G] has a(G x G)-action, i.e., a pair of commuting
G-actions. In order to differentiate between them, wé&lgtlenote the subgroup
Gx1 andG, the subgroup £G. Thus Dg := F(EG,, S°[G])“¢ is a G,-
spectrum. Similarly, we let, denote theG, action and«, the G,-action.

For integersj, k > 0, define a map

Nji: F(EGy, S°[G1)Y A, Ex — (S°[G]j Ag, Ex)"C

by the rule
(x,e) = (v (x(v),e))

forx € F(EG,, SO[G]j)Gf ande € E;. This is well defined: iff € G, then we
have(x, e) ~ (g *, x, ge), where(g *, x)(v) = x(v)g~ . BULN; 1 (g *, x, ge) is
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the functionv — (x(v)g™2, ge) ~ x(v). HenceN; i (x, e) = Nji(g * x, ge).
Therefore N; ; is invariant under th&,-action.

We still need to check tha¥; , maps into the homotopy fixed set. That is, we
must show that function +— (x(v), e) is G,-equivariant. Ifg € G,, then we
calculate

Nji(x, e)(gv) 1= (x(gv), ) = (gx(v), &) =: g *¢ (x(v), €)
= g *¢ (Njx(x,e)(v)).
Consequently, we land in the homotopy fixed set.

The mapN; . just constructed is compatible with the indicesjamndk vary.
Hence, we obtain a map of spectra

N: Dg Ag E — (S°[G] Ag, E)'C .
On the other hand, there is a natural identificatioredpectra
E ~¢ S°[G]lAg, E,
SO we may conside¥ as a weak map
Dg A E — E"C .
This completes the construction of the norm map.

Remark 3.1.There is a more straightforward way to think of the construction,
provided one is willing to admit that the homotopy categoryGegpectra has
internalfunction objects. The norm map may then be defined asah®osition
pairing

hom(s°, S°[G]) Aso;; hom(S°[G], E) — hom(S°, E),
where hom is taken in the homotopy categorysegpectra.

We are now ready to establish the properties of the norm map.

The case wherG is arbitrary and E is G-finitely dominated. By 2.4, the norm
map is clearly a weak equivalence when= S°[G] (since the target in this case
is preciselyDs and the norm map is identified with the identity in this case). By
(de-)suspending, the norm map is a weak equivalence for the spestrud
wherek € Z is any integer.

Suppose thakE = E’ U (D*! A G) is the result of attaching a cell to a
G-spectrumE’, and suppose that the norm map is a weak equivalencg’for
We have a homotopy cofiber sequencé&e$pectra

SANG, - E — E.
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Since cofiber sequences are up to homotopy fiber sequences, it follows that we
have an associated homotopy cofiber sequence

(Sk A G+)hG — (E/)hG N EhG

and the five lemma shows that the norm map is a weak equivalencg. for
Hence the norm map is a weak equivalence for@ryomotopy finite spectrum.
Naturality, and the fact that retracts preserve weak equivalences then shows that
we get a weak equivalence for agifinitely dominated spectrum.

The case whenBG is finitely dominated and E is arbitrary. The procedure

of killing homotopy groups shows thd can be expressed up to homotopy as
a filtered homotopy colimit o&G-spectrak®, wherew is an index andt® is a
G-spectrum having a finite number of (free) cells —in particular, the norm map is
a weak equivalence fdt®. SinceBG is finitely dominated, it follows thak G

is a G-finitely dominated based;-space (in the sense that up to equivariant
homotopy, it is aetract of a based5-space built up from a point by attaching a
finite number of (free) cells). The ‘small object argument’ now applies, yielding
a weak equivalence of spectra

hocolimF(EG ., E%)° ~ F(EG,, E)°.
o

From this equivalence, it is straightforward to deduce that the norm map is a
weak equivalence foE.

The partial converse.Suppose that the norm map is a weak equivalence for all
spectrak, and thatro(G) is finitely presented. The task is now to show tRat
is finitely dominated. The idea of the proof is that simdg A, E ~ E"°, it
follows that homotopy fixed points commutes with arbitrary homotopy colimits
(since homotopy orbits does).

To proceed, we substitute férthe sphere spectrus? with trivial G-action,
and choose a weak equivalence

hocolime® =§ s°
o

in which E¢ is a finite G-spectrum (this is accomplished by the procedure of
killing homotopy groups).

Because taking homotopy fixed sets commutes with filtered homotopy col-
imits, the associated map

hocolim(E*)"¢ — (§%)"¢
is a weak equivalence.

Consider the equivariant map EG, — S° which is given by collapsing
E G tothe non-basepoint 6P. Because the displayed map is a weak equivalence,
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there exist an index and an equivariant homotopy factorization of (the stable
map associated with)

SOANEG, — E¥ — S°.

Let G, denote the identity component6f Taking homotopy orbits with respect
to Go, we obtain arg(G)-equivariant homotopy factorization

S°ABG, — Ejg, — S°ABG,,

whereBG = EG/G is the universal cover oBG (note: BG is a model for
BGy). Take the smash product with the Eilenberg-Mac Lane spect‘hand
identify the resulting Eilenberg-Mac Lang(G)-spectra withZ[o(G)]-chain
complexes. It follows that the singular chain complexBds . is dominated by

the homotopy finite chain complex corresponding to the Eilenberg-Mac Lane
spectrum (withro(G)-action) HZ A Ej; . By a result of Wall [Wa2] it follows
that BG is finitely dominated. This completes the proof of Theorem D. ©

Remark 3.2.In proving the partial converse, note that we actually proved more:
to show thatBG is finitely dominated, we only need to assume thglG) is
finitely presented and that the norm map is a weak equivalendé fors°.

To apply Theorem D in the proof of Theorem B and Addendum C, we will
require an equivariant version of the norm map. Suppose that

l1-H—->G—>0—1

is an extension. Let be an(L x G)-spectrum, wheré is yet another topological
group.
Consider the spacE(EG ., E;). This again admits &L x G)-action given
by
Lexd = (s (L, P ).

forg e Gandl¢ € L, and¢: EG, — E;. Taking fixed points with respect to
H identified as the subgroup<lf C LxG, and letting; vary, it follows that
the spectrum

F(EG,., E)

comes equipped with afl x Q)-action.

Corollary 3.3. Assume thak is an(L x G)-spectrum. Then there is &h x Q)-
equivariant (weak) map

D), Anww E — F(EG., E)?,

where D, is the G-spectrum of 2.6. Furthermore, this map coincides up to
homotopy with the norm map fd considered as a7 -spectrum.
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Proof. We first explain how each of the spectra in the statement of 3.3 are
equivariant. We have already indicated h@x Q) acts onF(EG., E)?. Give

D}, Apu E anL-action using the give-action onE and the trivialL-action on

Dy,. SinceD, A E may be given the diagonél-action, the homotopy orbit spec-
trum D, A E has aQ-action. Consequently)’, A,y E has &L x Q)-action.

We next explain how the map is defined (the reader may wish at this point to
consult the construction of the norm map as given in the proof of Theorem D).
Assume without loss in generality thatis fibrant and cofibrant.

For indicesj, k > 0 there is a map of spaces

Njx: F(EGy, S°IH)" An Ex — F(EG., S°LH]; Ay E)"

given by (x, e) = (v = (x(v), e) (this is the same formula we used to define
the norm map). By a straightforward check which we omit; is well-defined.
We claim that](fj,k is (L x Q)-equivariant.L equivariance is clearl( behaves
like a dummy variable). Leg € Q be any element, and lgt € G denote any
lift of it. Equivariance with respect t@ follows from the calculation
Nji(@ % (x,€)(0) = (N )((g *x, g)(v) = (gx(g "), ge)
=1 (g % Njx(x,€)(v) .
Letting the indiceg, k now vary, we obtain a (weak) map ¢f x Q)-spectra
D), A E — F(EG,, E)?

Unegquivariantly, this (clearly) is identified with the norm map. O

4. Proof of Theorem B and Addendum C

Let
l1-H->G—>0—1

be an extension
Since D = S°[G]"°, and Q = G/H, we have a weak equivalence of
G-spectra

D ~¢ (F(EG,,S°[G)™)"C. 1)

We first consider the inside terf(EG.., S°[G])”. SinceS°[G] has a(G x
G)-action, taking homotopy fixed points with respect Bbidentified as the
subgroup X H ¢ G xG, and applying Corollary 3.3 together with Theorem D,
we obtain a weak equivalence @ x Q)-spectra

F(EG, S°LlGDY ~Gyxo Dy Aun S°LGl 26wo Dy Au G (2)
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Here we are using the fact thAtH is finitely dominated.
By 2.4 we also have a weak equivalence

D}-I AH G+ ~6xQ D}-I/\Q‘*“ (3)
Assembling, we get a weak equivalence
F(EG4, S%IGD" ~gxo Dy A Q. (4)

Take homotopy fixed points of both sides of this with respea?t(considered

as the subgroupQ c G x Q). Since we are assuming either: BY) is finitely
dominated, or (i) thaB H is a finitely dominated Poincarspace so thab}, is

a spheré,and thereforeD}, A Q. is Q-finitely dominated, we are in a position

to apply Theorem D and Corollary 3.3 again to obtain weak equivalences of
G-spectra

D¢ ~¢ (F(EG,,S°G)")"? by (1)
~G (D}-I AN Q+)hQ by (4)
~c Do Ao (Dy A Q) by Theorem D and 3.3
~c Do A Dy by 2.4.
This completes the proof of Theorem B and Addendum C. O

5. Proof of Theorem A

Assume thaBG is finitely dominated.
‘2 = 3': Trivial.

‘3 = 1": This will use Theorem B and the unstable equivariant duality theory
developed in [KI5§6] (see also [KI3]). To explain this will require some prepa-
ration.

Recall that ifX andY are based;-CW complexes which are free away from
the basepoint, then aquivariant dualityis a mapd: S — X A¢ Y such that
the associated map of function spectra

F(X,E)° 5 F(S",EAgY).

is a weak equivalence for any-spectrumkE (the correspondence is given by
= (f Agidy) o d).

Itis shown in [KI5, Th. 6.5] that for ang-homotopy finite based fre&-CW
complexX, there exist an integer > 0, a G-homotopy finite free base@-
CW complexy and an equivariant duality” — X A Y. By a straightforward

2 See ‘1= 2 in the proof of Theorem A appearing in the next section. Note that we aren't
arguing circularly since ‘I 2’ does not use Theorem B in its proof.



The dualizing spectrum of a topological group 441

argument which we omit, iX is G-finitely dominated, then there is@finitely
dominatedy, ann > 0 and an equivariant duality” — X A Y. By taking a
suitable suspension, we can assume histsimply connected.

We are now ready to proceed with the proof. Sila& is finitely dominated
(as unbased spacé&)G, is G-finitely dominated. Consequently, there exist an
integern > 0, aG-finitely dominatedy and an equivariant duality map

d:S" > EG, rg Y.

Passing to the stable category andold desuspending, we obtain a map of
spectra

$° > EG, Ag 7Y
inducing a weak equivalence

F(EG.,E)° S F(S°, E Ag 27Y)

for anyG-spectrum&. Remember thaf®[ G| has &G x G)-action. We may take
E to beS°[G] with its (G x 1)-action. Therefore we get a weak equivalence

D¢ := F(EG,, S°[G])? = F(5° S°[G]l Ag Z7"Y) = Z7"Y .

By naturality, this weak equivalence (s-equivariant. Thus we conclude that
there is an equivariant weak equivalence

DG ~G XY .

By assumptionpDg is unequivariantly homotopy finite. From this we infer that
Y is an (unequivariant) homotopy finite space.
The pair of Borel constructions

(EGxCY, EGxgY)

(whereCY denotes the cone on with G acting trivially on the cone coordi-
nate) is a (finitely dominated) Poin@apair. Poincare duality is a consequence
of two facts: firstly, the quotient associated to the paiEi6, Ag XY, and
the statement of equivariant duality f&rG . with respect to the&s-spectrum

E = the Eilenberg-MacLane spectruliM on aZ[mo(G)]-moduleM gives an
isomorphism

H*(EGxgCY; M) = H,11 «(EGxgCY,EGXgY; M).

Secondly, as the inclusiadhG x Y — EG xsCY is 2-connected, [KI4, Lemma
2.1] enables one to conclude that the pair in question is a Peipedr”
In particular, the boundark G x ;Y is a finitely dominated Poincarduality
space, and the fibration
Y - EGxsY - BG

is a fibration of connected finitely dominated spaces. Consequently, Corollary F
shows thatB G is a Poincag duality space.
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‘1 = 2" If BG is a Poincae duality space of dimension say, then it has a
Spivak fibration. If we use the method of [KI5], then the Spivak fibration is given
as follows: let

S/ > EG, AgY

be an equivariant duality, whekgis G-finitely dominated and 1-connected. It is
shown inthe proof of [KI5, Cor. C] that is unequivariantly homotopy equivalent
to §/=", and the Spivak fibration a8 G is given by the Borel construction

Y - EGxsY — BG.

But we know from arguments above that there is an equivariant weak equivalence
D¢ ~¢ X ~/Y. ConsequentlyD is unequivariantly weak equivalent &,
This finishes the proof of Theorem A. O

In the process of proving Theorem A, observe that we actually established
more:

Corollary 5.1. Suppose thaBG is a finitely dominated. Then

— Dglisasuspension spectrum,i.e., thereis anintgger Oand an equivariant
weak equivalence
YIDg ~g T®Y

for someG-finitely dominated-connected base@-spaceY .

— IffurthermoreBG is a Poincag space, theld is unequivariantly weak equiv-
alent to a sphere and the Spivak fibration”R4 is given by the Borel con-
struction

Y > EGxgY — BG.

We end this section with a corollary which shows that the property of being
a Poincae’duality space is preserved with respect to taking finite coverings.

Corollary 5.2. Suppos& — X is a finite covering projection, wher€ and X
are connected finitely dominated spaces. TheB a Poincag duality space of
dimensiom if and only if X is.

Proof. We may assume without loss in generality tNat= BG. ThenX ~ BH
whereH C G has finite index and the covering map is given®¥ — BG.
By 2.5 we haveDy >~ Dg, S0 Dy is a sphere of dimensionn if and only if
D¢ is. Now apply Theorem A. O

6. The proof of Theorem H

We first give the proof while ignoring technicalities, and thereafter fill in the
details.
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Let G(X) be the topological monoid of self homotopy equivalenceX pf
and letG (X, %) denote the the topological monoid of based equivalences. Then
there is a fibration

GX,x) > GX)—> X

in which the projection from total space to base is given by the evaluation map at
the basepoint. Using a suitable group model for the loop saandG (X, %),
the connecting map

22X - G(X, %)

is then a homomorphism. It can also be arranged that this map is the inclusion
of a normal subgroup (see below). It follows that there is an equivariant weak
equivalence

Dox ~ox Doy

in which the right side has the structure af&X, x)-spectrum (cf. 2.6). To avoid
notational clutter we assume without loss in generality ihat comes equipped
with an extension of it$2 X-action to aG (X, x)-action.

Now, the fibration is classified by a map X — BG(X, %) which is null
homotopic: use thél-space structure ok to get a section up to homotopy —
G (X) of the evaluation map. ThereforefactorizesaX — CX — BG(X, *).
If we loop this factorization back we obtain a factorization of groups

X - 2CX - G(X, %).

where the composite coincides with the connecting map. It follows sth¥it
action onDgx admits an extension to an action of a contractible group.

But this implies thatD gy is isomorphic to a spectrum withivial action in
the homotopy category @ X-spectra: the isomorphism is defined by the chain
of weak equivalences

Dox ~<£X Dox N (QCX)+ “E)X D_t(g\;( s

where D% meansDx equipped with trivial action and

— the middle termDgx A (£2C X)), is given the diagonaP X-action (2 X acts

on (2CX), by left translation).
— Theleft map is defined by projection onto the first factor of the smash product.
— The right map is defined by the formula, 7) > t~1x, wherex € (Dgox);

andr € (2CX),.

Step 2.SinceDgy is 2 X-finitely dominated, the homotopy orbit spectrum

(D.QX)h.QX

is homotopy finite.
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Since the action of2 X on Dgx is homotopically trivial, it follows that the
evident map

Dox — (Dox)nex

is a coretraction: homotopical triviality of the action shows tt@t x).ox iS
identified up to homotopy with

Dox N (BS2X) ~ Dox AN X4,

and a retraction is defined by the mBx A X, — Doy A S° that is given by
smashing the identity ab, x with the based majy, — S° given by collapsing
X to the non-basepoint ¢.

SinceDgy is aretract of its homotopy orbits, we infer thag, x is homotopy
finite when considered as an unequivariant spectrum. By Theorem A, we infer
that X is a Poincag’duality space. This completes the outline of the proof.

We now proceed to fill in the details. Instead of looping the classifying map
u: X - BG(X, %), we considerinstead the m&g (X, x) — BG(X).Convert
this map into a Serre fibration, and call the reE (X, x)' — BG(X). Let
us think ofu now as a mapX — BG(X, %)f, and choose a null-homotopy
CX — BG(X, %)\

Letw. denote the functor from based spaces to simplicial groups which assigns
to a based space its total singular complex followed by its Kan loop group. Let
L.X denote the kernel of the homomorphisnBG (X, %)' — w.BG(X). Then
we have a commutative square

wX —— LX

! l

0.CX —— w.BG(X, %) .

LetC’X denote the homotopy pushout in the model category of simplicial groups
of the diagram
wCX «—wX—>LX

(see [Qul]). Therf’X is a contractible and the homomorphighX — w.BG
(X, %)f factors throughC’X. The realization. X := |L.X| is yet another topo-
logical group model for the loop space &f and the homomorphisthX —
lo.BG(X, )| is the inclusion of a normal subgroup.

Consequently, the dualizing spectrdiy can we modified in its equivariant
weak homotopy type to a spectrubyi , having an action ofw. BG (X, *)'|. By
commutativity of the above square, the actionof on D] , restricts to an
action ofwX := |w.X|, and the action of the latter extends to the contractible
groupwC’'X = |w.C'X|. We conclude from this that the action®X on D;
is homotopically trivial.
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Finally, observe thai X is yet another model for the loop spaceXf(in
particular,BwX is homotopy equivalent t&), and thatD; , is w X-equivariantly
weak equivalent td,x. So the action ofo X on D,y is homotopically trivial.

The rest of the proof follows Step (2) above. This completes the discussion of
details and the proof of Theorem H. O

7. The proof of Theorem |

The following result will be required for the proof:

Proposition 7.1. Assume thaB G is finite dimensional up to homotopy. Assume
that W is a G-spectrum. Suppose that there exists an unequivariant weak equiv-
alence

W~ XX
whereX is a finite complex. Then there exist an integes> 0, a G-spaceZ and
an equivariant weak equivalence

SIW g E%Z.

Proof. By applying fibrant and cofibrant replacement, we can assume without
loss in generality that is fibrant and cofibrant, and thatis a CW complex. Let
Aut(W) denote the topological monoid whose points are (unequivariant) self-
mapsW — W which are weak equivalences. The actiont®bbn W specifies

a homomorphism of topological monoids — Aut(W), which upon applying
classifying spaces, gives a map

BG — BAut(w).

Let X°X be the spectrum whosgth space isS/ A X. Then 22X is a
cofibrant version of the suspension spectruil &y hypothesis, we may choose
anunequivariant weak equivalenceg® X — W, whereX is afinite dimensional
complex. Let¥ % X be the effect of (functorially) convertingc° X into a fibrant
and cofibrant (unequivariant) spectrum.

We assert that the homomaorphism of topological monoids

@ AULEZX) — AUt(ZSX)

(given by the functor which maps a function to the map induced on fibrant
approximations) is a weak equivalence of underlying spaces. To see this, let
E(XEX, X25X) be the space of weak equivalences fraift X to X X. Then
the map

¥ AUL(ZNX) — E(Z&EX, Z35X)

which is given by restricting the source is a weak equivalence of underlying
spaces, since both the source and targe¥ adre function spaces having the
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‘correct’ homotopy type (each function space consists of mappings out of a
cofibrant object into a fibrant object).
Also the composite

W o d: AULEXX) — E(ZFX, E8X)

is the map given by including targets—it too is a weak equivalence of spaces,

sinceX has aright adjoint that preserves weak equivalences between cofibrant

objects. Consequently, the homomorphiris also weak equivalence of spaces.
Applying classifying spaces, we obtain weak equivalences

BAUY(Z°X) — BAUt(Z3X) ~ BAUt(W)

where the second of these equivalences arises because the fibrant and cofibrant
spectraX ;X andW are homotopy equivalent.

On the other hand, if Ayt X/ X) refers to the topological monoid of based
self weak equivalences of the spaEéX, the Freudenthal suspension theorem
says that the evident homomorphism

Aut, (27 X) — Aut(Z°X)

has connectivityj —3— dim X, where dimX denotes the dimension &f as a
CW complex. Assembling, we have maps

BAut. (X' X) — BAuUt(W)

whose connectivity tends to infinity gsdoes.
SinceBG is homotopy finite dimensional, there exists an integeuch that
the mapBG — BAut(W) factors up to homotopy through a map

BG — BAuUt.(X’X).

This means that we can construct a fibration oB&r with fiber X/ X, such
that the fibration is equipped with a section. If we pull this fibration back along
EG — BG, the resulting total space, callit, is an (unbased) space with
action equipped with an equivariant sectiBi — Y. Moreover,Y is has the
unequivariant homotopy type &/ X. The mapping cone of this section yields
a baseds-spaceZ again having the unequivariant homotopy type3dfx. A
tedious, albeit straightforward, checking of definitions (which we omit) shows
that x> Z and X/ W are equivariantly weak equivalent. This completes the proof
of 7.1. O

Proof of Theorem ISuppose that

F— FE— B
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is a fibration of connected finitely dominated Poiredtiality spaces. Choose a
basepoint foiF (this gives basepoints f& andB). Let G denote the realization
of the Kan loop group of the total singular complex Bfand letQ be the
realization of Kan loop group of the total singular complexsoDefineH to be
the kernel of the surjective homomaorphigim— Q. Then we have an extension

1-H—-G—- Q- 1.

Applying the classifying space functor gives us a fibrathH — BG — BQ
which is identified with the original fibration up to weak equivalence.
By Addendum C we have an equivariant weak equivalence

DG:GD/H/\DQ-

By Theorem A, these spectra are all spheres, and since the classifying spaces
BH, BG and B Q are finitely dominated, they are also homotopy finite dimen-
sional. Consequently, we may apply 7.1 to conclude that there exist a based
Q-spaceY, a based;-spaceZ, an integerj > 0 and equivariant weak equiva-
lences

Y'Dp~p XY and X/D) ~; X°Z.
By 5.1, EQxoY — BQ represents the Spivak fibration &fQ. Since the
pullback of EGxsZ — BG to BH is identified WithEH xyZ — BH, and
the latter is the Spivak fibration & H, the former is a prolongation of the latter
to BG. Consequently, we have a weak equivalence

YD ~¢ EXYAZ,

whereG acts diagonally on the right hand side.
By 5.1, the Borel constructioBG x (Y A Z) — BG is the Spivak fibration
of BG. Itis straightforward to check that this last fibration has the fiberwise stable
type of the fiberwise join of the fibrationBGxsY — BG andEGxgZ —
BG. O

8. Proof of Theorem J

LetF — E — B beafibration of connected finitely dominated spaces. Asin the
last section, we can assume that this is coming from an extension of topological
groups
l1-H—->G—-0—->1

by applying the classifying space functor.

Let D}, be the dualizing spectrum @f modified as in52 so that it has an
extension to aG-action. Then according to 5.1 there exist an integer 0O, a
1-connected basad-spaceZ and an equivariant weak equivalence

D), ~y Z°Z.



448 J.R. Klein

Then(EGxyCZ, EGxyZ) is a Poincag pair (details omitted; the argument
is essentially the same which is used in the proof 6£3’in Theorem A), and
the fibration pair

(EGxyCZ,EGxyZ) — (EGxgCZ,EGxgZ) — (BQ, BQ)

completes the proof. O

9. Proof of Theorem E

Let M be anyZ[no(H)]-module. Since& H, is finitely dominated, we know and
that Dy is equivariantly dual ta& H, (cf. the proof of 3= 1 in Theorem A).
Consequently, there is an isomorphism

7_o(Dy Apg HM) = H*(BH; M) =0 for *>n.

Now use 2.2 to conclude thaty is (—n — 1)-connected.
By 2.5, there is an unequivariant weak equivalence

DHZDg.

It follows that D¢ is also(—n — 1)-connected. But then so is the spectrum
D¢ A6 E sinceE is (—1)-connected. Using the homotopy cofiber sequence

D A E — E"0 — E'C

one infers that the map’® — E'C is (—n)-connected. One concludes from
this thatE*(G) and E*(G) are isomorphic in degrees> n. O

10. Appendix: Examples

1. BG is a finitely dominated Poincar duality space.According to 5.1,
YIiDg ~c XY whereY is unequivariantly a sphere. Moreover, the Borel
constructionY —- EGxsY — BG gives the Spivak fibration.

Hence, ifBG has dimensiom, there is an equivariant weak equivalence

DG ~G SV s
whereSVi— is the fiber of the Spivak fibration desuspended down to degree
2. The case of a compact Lie group.

Theorem 10.1. Assume tha€ is a compact Lie group. Then there is an equiv-
ariant weak equivalence

DG ~G SAdG ,
where the right side denotes the suspension spectrum of the one point compact-
ification of the adjoint representation 6f.



The dualizing spectrum of a topological group 449

Proof of 10.5Sketch). Thinking unstably, for the moment we ta#kés to mean
the one point compactification of the Lie algelgraf G, with the G xG action
on it in which G x1 acts trivially and X G acts via the adjoint representation
Adg: G — GL(g). Give G the action ofG x G defined by(g, h) xx = gxh™L.
Give the based function spag&G ., $A%) the action ofG x G defined by con-
jugation of functionsig, ) * ¢ (y) = Adg(h) (¢ (g~ 1yh)).

Let

log: G — §A%

be defined as follows: chooge> 0 such that the exponential map exp— G
is an embedding oP (¢) = the disk of radius. Identify SA9 with D(€)/d D (e).
Define logx) to bez if exp(z) = x andz has norm< ¢, andoo otherwise.
Then the map
a: G. — F(G,, $"9)

given bya (x)(y) := log(x1y) is (G x G)-equivariant. (This uses the fact that
gexpix)g~t = exgf @™ forallg € G, x € g.)

The adjunction mag: G, A G, — S$%9 of « is a Spanier-Whitehead du-
ality. (Reason: using the trivialization of the tangent bundl&ajiven by left
translation F (G, $9) is identified with the space of sections of the fiberwise
one point compactification of the tangent bundle. With respect to this identifica-
tion, the mapx gives the tangential version of Atiyah duality [At].)

Passing to the stable category, we infer thatduces a G x G)-equivariant
weak equivalence of spectra

S%G] ~Gxc F(Gy, $%).
Taking homotopy fixed sets with respect ta &, we obtain
DG — (SO[G])h(GX].) ~c F(G+, SAd(;)GXl — SAdG .

Corollary 10.2. Suppose that; is a compact Lie group and tha@ is an un-
equivariant spectrum. Léf = W A G,.. Then the norm mapg A, E — E"¢
is a weak equivalence.

Proof. The proof of 10.1 shows that’[G] and F(G,., %) are (GxG)-
equivariantly weak equivalent. Consequently, smashing Witve get

W A Gy ~geg WA F(G,, §79) .
SinceG, is a finite complex, the small object argument implies that
W A F(Gy, $89%) ~6yg F(G4, "% A W) .
Therefore we get a weak equivalence

W A Gy ~gxg F(Gy, SA% A W).



450 J.R. Klein

Taking homotopy fixed sets with respectd@oc 1, we get
E"C = (WA GG g 886 AW ~g Dg AW ~g Dg Ang E .

A (tedious) check which we omit shows that this identification coincides with
the norm map up to homotopy. O

3. G is afinitely dominated topological group.By 2.5, we can assume that
is connected. We have an extension

222G —- PG —~ G

given by the path fibration. By Theorem B2G ~ G is a Poincae duality
space, so Theorem B says tag; A Dg ~ Dpg = S°. If G has dimension
n as a Poincar duality space, theo; ~ S~". It follows that there is an
unequivariant weak equivalence

DG:SH.

4. I is atorsion free discrete cocompact subgroup of a connected Lie group
G. In this instanceBI" is homotopy equivalent to the compact closed manifold

I'\G/K

whereK C G is any maximal compact subgroup. So by Theorem A, there is a
weak equivalence
Dp ~ S

wheren = dim G andk =dimK.

5. I' is a finitely generated free group.Suppose that” is a free group org
generators. Leld, be a handlebody of gengembedded ifR3. ThenBI" ~ H,,
and 10.5 and 10.6 below show

Dr ~r S3A ¥Br,,

where XY denotes unreduced suspension &g, is the space with™-action
defined as follows: letr, be the kernel of the homomorphism (0 H,) —
m1(H,). Thenrn, acts freely on the universal cover of the surfadé,. The
universal cover is contractible, so a model for the classifying spages given
by taking the orbit space of the,-action. The orbit space therefore inherits a
I"-action.

Unequivariantly, it is elementary to check th&i- weak equivalent to an
infinite countable wedge af-1)-spheres.

Remark 10.3.Since finitely generated free groups are arithmetic, one can alter-
natively identify the dualizing spectrum in this case by appealing to example 8
below.
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6. " = P, is the pure braid group. Recall thatP, is defined to be the funda-

mental group of the ordered configuration space pbints inR?. The latter is

an Eilenberg-Mac Lane space, B®, is in particular homotopy finite.
Forgetting the last point in a configuration defines an extension

1—-72% - P,— P,_1— 1.
Iterated application of Theorem B now shows that
Dp, > Dyxe A Dyug-n A --- AN Dy,

Each factor on the right side is weak equivalent to a countably infinite wedge
of (—1)-spheres. Consequentlp, is unequivariantly weak equivalent to a
countably infinite wedge of spheres of dimensighg (g+1).

7.I" = 7Z, % Z is the infinite dihedral group. It is well-known that the infinite
dihedral group has an infinite cyclic (normal) subgroup of index 2. Consequently
2.5 shows that

Dz,s7, = Dz =~ st

(the last equality is a consequence of Theorem A and the facBthat S').

8. I' is atorsion free arithmetic group. It is known by work of Borel and Serre
[B—S] that there is a model foBI" which can be compactified to a compact
manifold with corners.

Namely, the spac& := G(R)/K is a model forEI", whereG(R) is the
group of real points of the algebraic group whérdives, andK is a choice
of maximal compact subgroup. Borel and Serre define a manifold with (free)
I'-action X by adding corners t& in a suitable way. The compactification of
BT is then

Y=X/I.

The spaceX is gotten fromX by adjoining a ‘partial’ boundarg X which
has thel"-equivariant homotopy type of = the Solomon-Tits building of the
group of rational points of; (see [Br3, Chap. 7] for more details).

Let S™ denote the Thom space of the tangent bundié.dfs X is contractible,
S™ is a sphere having the same dimensiorka$/loreover,S* comes equipped
with a based -action. Then unreduced Borel construct§in— S*x X — Y
has the fiber homotopy type of the fiberwise one point compactification of the
tangent bundle of . Using 10.5 and 10.6 below, we infer

Theorem 10.4. There is an equivariant weak equivalence
Dr ~r F(§%, X®X'YA),

where XA is the unreduced suspension of the Solomon-Tits buildindn
particular, up to an orientation character, the homology®f coincides with
the Steinberg representation.
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SinceA is homotopy equivalent to wedge of spheres, unequivariddtys
a wedge of spheres.

Examples 5 and 8 made use of the following result:

Proposition 10.5. Let G be a topological group. Assume th#&G comes

equipped with a weak equivalense Y = BG in which (¥, 3Y) is a finitely
dominated Poincas pair. LetS® denote the the fiber to Spivak tangent fibration
of Y (dimension shifted so that it has degreg considered as & -spectrum.
Then there is an equivariant weak equivalence

D¢ ~¢ F(S°, Z®Y/3Y),
where(Y, 3Y) denotes the fiber product x2S EG, 3Y xBCEG).

Remark 10.6 Note that! is weakly contractible, sﬁ /8Y is equivariantly weak
equivalent tox!aY, the unreduced suspensmnadf

Proof of 10.5Sketch). Letp: (E, E|yy) — (Y, 0Y) be the Spivak normal fibra-
tion. By taking fiberwise join withs? if necessary, we can assume tpatomes
equipped with a section. The characterizing property of the Spivak fibration is
that comes equipped with a map

a: 8/ — E /E 3y

whose target is the Thom spacegfin which the cap product af, ([S/]) with
the Thom class op is a fundamental class f@t, 9Y).
Up to fiber homotopy equivalence, we can rewyitas a Borel construction

(S'xgY, §"xgdY) — (¥, dY),

whereS"” represents the fiber gf together with its based-action.
With respect to this identification, the Thom spdce £ ;, is identified with

S” Ang Y /Y. In this representation, becomes a map
B: 8 > EG, A (S* AY/3Y),

and the relation between the Thom isomorphism and Poineattuiality trans-
lates to the statement thatis an equivariant duality map (this also uses [KI5,
Prop. 6.4]).

On the other hand, as in the proof o3 1 of Theorem A (see Sect. 6), we
know that there exist an integkers> 0, an equivariant weak equivalence

Sj A\ DG =G Yz

and an equivariant duality maff — EG_ A Z. By suspending if necessary,
we can assume that= j
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By the uniqueness theorem for equivariant duals [KI5, Thm 6.5], we may
conclude that there is an equivariant weak equivalence

(S* AY/3Y) ~g Z°Z.
Consequently, there is an equivariant weak equivalence
D ~c S"AY /Y.

SinceS™ A S ~¢ S°, we have an identificatiof’ ~; F(S7, S9). SinceS? is
G-finitely dominated, we have (57, S A E ~; F (ST, E) for anyG-spectrum
E. In particular,

DG ~g S' AY /Y ~g F(S7, X°Y/3Y).
O

9. I is a Bieri-Eckmann duality group. Assume thaB I" is finitely dominated.
Recall thatl” is aduality groupof dimensiom if there exists &[I"']-moduleD
such that in every degree there is an isomorphism

H*(I'; M) = H,—.(I'; D @z M).

for any Z[I"']-module M (see [Br4, Chap. 8, Sect. 10] for the basic properties
of duality groups). The modul® is called thedualizing moduleof I'", and is
isomorphic toH"(I"; Z[I']). It is known thatD is torsion-free as an abelian
group. If D is finitely generated and has rank one, tiBa is a Poincag’space,
and in this instance one says thais aPoincaré duality group.

The following result characterizes the dualizing spectra of duality groups.
We omit the proof, since it essentially follows along the lines of the proof of
Theorem A.

Theorem 10.7. A group ! is a duality group (of dimensiom) if and only if its
dualizing spectrunD - is unequivariantly weak equivalent to a Moore spectrum
in degree—n on a torsion free abelian group.

(Recall that aMoore spectrunm degreej on an abelian group is a spectrum
Y whose spectrum homology. (Y A HZ) vanishes except in dimensignand
whose homology in degregis isomorphic toA.)

Remark 10.8.f I" is a duality group of dimensiom, then it is not difficult to see
that the spectrum homology @ in degree—n coincides with the dualizing
module ofI".

If Dr is nota(—n)-sphere, then it follows from Theorem A thAt- is not a
homotopy finite spectrum. We infer that- is a Moore spectrum on an abelian
group which is not finitely generated. Thus, we recover a result of Farrell [Fa]
which says thathe dualizing module of a duality group is finitely generated if
and only if the group is a Poincarduality group (i.e., the dualizing module has
rank one).



454 J.R. Klein

10. The casd” = Z¢ = 7. Let us call a diagram

R— O

L

P—— G

of (topological or discrete) groups amalgamation diagrant it becomes ho-
motopy cocartesian after applying the classifying space functor. Associated to
an amalgamation diagram, there is a homotopy cartesian square of spectra

D —— (S%G])*?

l l

(S°IGD"? —— (SUGD"E.

We apply this in the following situation: le® be the trivial groupP = Z¢ and
0 =7Z" withd, m > 0. SinceP andQ are Poincag duality groups, the square
in this case becomes

D¢ — ST AP Gy

! |

S4Ap Gy ——  SYGY,

where we have used Theorem D to rewrite the lower left and upper right hand
corner as homotopy orbits. Note that the actionPobn Dp is trivial. Conse-
quently S~ Ap G is an countably infinite wedge of copies §f¢. Similarly,

S~ Ap G is a countably infinite wedge of copies §f”, while S°[G] is a
countably infinite wedge of copies 6f. For dimensional reasons, the maps in
the diagram are null homotopic. Consequently,

Dyagn ~ \[(STtv S vs™)
1

wherel is a countably infinite indexing set. In particul@f. « Z is nota duality
group unlesg = m = 1.

A problem, a question and a conjecture.n all examples above) turned

out to be unequivariantly weak equivalent to a wedge of spheres. It would be
interesting to have other kinds of examples, especially in the case of a discrete
group.

Based on the technique of “hyperbolization” [D-J], Bestvinaand Mess [B—M]
have given examples of discrete groupsuch thatBI" is homotopy finite and
H3(I'; Z[I']) = Z/2. This implies thaD - is not the homotopy type of a wedge
of spheres.
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Problem. Compute the homotopy type Bf- in the Bestvina-Mess examples.

We know that Bieri-Eckmann duality grougs are such thaD, has the
unequivariant weak homotopy type of a Moore spectrum on atorsion free abelian

group.

Question.In the case of a duality group', is the dualizing spectrum always a
wedge of spheres? (This is a rephrasing of the old question which asks whether
the dualizing module is free abelian.)

Finally, there is the issue of whether or not the unequivariant homotopy type
of the dualizing spectrum is@arseinvariant. If I" is a finitely generated group,
then the word metric equips with the structure of a metric space.

Conjecture. Suppose thaf andI"’ are quasi-isometrié. Assume thaf” and ™’
have homotopy finite classifying spaces. Thgnand D are unequivariantly
weak equivalent.

There s positive evidence for this conjecture: with respect to our assumptions,
the spectrum homology d?, coincides withH}(EI"; Z), the cohomology of
ET" with finite supportsGersten [Ge, Th. 8] has shown that tH&t(ET"; Z)
andH;(ET"; Z) are isomorphic. Consequently, the spectrum homolog ef
and Dy are isomorphic.
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