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Structure theorems for homotopy pushouts I: contractible pushouts
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Abstract

We define a classifying space for contractible homotopy pushout diagrams and
then study its homotopy type.

Introduction

The purpose of this series of papers is to study homotopy pushout squares, i.e.,
commutative diagrams of spaces of the form

(0·1)

A C

K X

such that the canonical map

K xA×0 A× I xA×1 C → X

is a homotopy equivalence, where the source denotes the double mapping cylinder
of the diagram K ← A → C. In this paper, we will only consider the case X = pt;
we may then specify the diagram (0.1) in a compact way as a map

A→ K × C .

Observe that A homologically behaves as the wedge K ∨C. In fact, A splits after
one suspension as the wedge ofK and C. However, the following elementary example
shows that A might not split unstably.

Example 0·2. Let K = Sm and C = Sm+ ∧ Sm ' S2m ∨ Sm, with m > 1. Let
A = Sm×Sm, with A→ K the projection onto the first factor, and A→ C the map
which collapses Sm× M ⊂ Sm×Sm to a point. Then the data describe a contractible
homotopy pushout. It is easy to check by means of cohomology rings that A fails to
split as K ∨ C.

Now assume that K and C denote 1-connected, based spaces. Let D(K,C) denote
the category in which an object is a contractible homotopy pushout diagram of
based spaces A → K × C such that A is also 1-connected. A morphism from an
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object A → K × C to an object A′ → K × C is specified by a based homotopy
equivalence A→ A′ which commutes with projection to K × C. Let

D(K,C)÷ |D(K,C)|

denote the classifying space of D(K,C), that is, the geometric realization of its nerve.1

Thus, D(K,C) is a kind of classifying space for contractible homotopy pushouts with
vertices K and C. Note that D(K,C) is equipped with a basepoint given by the
‘trivial’ diagram K ∨ C → K × C.

Suppose that K is homotopy equivalent to a CW complex of dimension k but not
to one of k− 1. In this instance we write dimCW K = k. Similarly, let dimCW C = c.
Let r = connK be the connectivity of K, and let s = connC denote the connectivity
of C. For based spaces Y and Z, let {Y, Z} denote the abelian group of homotopy
classes of stable maps from Y to Z.

Our first result is

Theorem A. (1) There is a homotopy equivalence

D(K,C) '
∐
α

BMα

where Mα is a certain group-like topological monoid (defined in 3·1 below), BMα denotes
its classifying space and the disjoint union is indexed over the elements of π0(D(K,C)).

(2) There is a map of pointed sets

π0(D(K,C))→ {K ∨ C,K ∧ C}

which is surjective if k, c 6 3 min (r, s) and an isomorphism if k, c 6 3 min (r, s)− 1.

Without knowledge of the explicit form of the topological monoids Mα, the first
part of Theorem A has trivial content: any space decomposes as a disjoint union of
its connected components. By choosing a basepoint, each connected component may
be written up to weak homotopy equivalence as the classifying space of its associated
(Moore) loop space (the latter a topological monoid). The interest in the first part of
Theorem A lies in the explicit description of the Mα. In fact, Mα can be defined as
the topological monoid of homotopy automorphisms of a choice of basepoint in the
α-component of D(K,C). This description will be used in proving Theorems B and
C (see below), and it is for this reason that we state the first part.

Here is an illustration of the second part of Theorem A, with K = Sm = C. The
result says that there is an isomorphism of pointed sets

π0(D(Sm, Sm+ ∧ Sm))% {Sm ∨ Sm+ ∧ Sm, Sm ∧ Sm+ ∧ Sm} = Z .

The example of 0·2 will be seen to correspond to 1 ∈ Z under this isomorphism.
In general, to represent the other integers, we let A be the result of attaching an
integral multiple ` of the Whitehead product map S2m−1 → Sm ∨ Sm. This yields a
contractible pushout diagram A→ Sm× (Sm+ ∧Sm) which corresponds to the integer
` via the isomorphism.

1 As usual, in order to make sense of geometric realization, we have to replace this category
with a suitably ‘small’ model, by restricting what one means by the term ‘space’. For our purposes
‘space’ will denote a compact ANR embedded in R∞. Alternatively, one can work with countable
CW complexes. In the end, the model to be used is basically a matter of taste.



Structure theorems for homotopy pushouts I 303
For certain applications, one wants to allow K and C to vary within their homo-

topy types. For this purpose, we define E(K,C) to be the category whose objects
are contractible homotopy pushout diagrams A′ → K ′ × C ′ where K ′ and C ′ are
(abstractly) homotopy equivalent to K and C respectively, and A′ is 1-connected. A
morphism

(A′ → K ′ × C ′) 7−→ (A′′ → K ′′ × C ′′)

is specified by homotopy equivalences A′ → A′′, K ′ → K ′′ and C ′ → C ′′ such that
the evident diagram is commutative. Set E(K,C) = |E(K,C)|.

For a based space X, let G(X) denote the topological monoid of based homotopy
automorphisms of X. Our second result identifies the homotopy type of E(K,C) in
terms of D(K,C), G(K) and G(C):

Theorem B. There is a fibration up to homotopy

D(K,C)→ E(K,C)→ BG(K)×BG(C) .

Moreover, this homotopy fibration admits a section. Consequently, π0(D(K,C)) =
π0(E(K,C)) and there is a homotopy equivalence

ΩE(K,C) ' ΩD(K,C)×G(K)×G(C) .

By combining Theorem B with Theorem A, we obtain a homotopy equivalence

ΩE(K,C) 'M0 ×G(K)×G(C) ,

where M0 is the topological monoid (of 3·1 below) which corresponds to the compo-
nent of the trivial diagram K ∨ C → K × C.

Our third result is a kind of stability theorem for contractible homotopy pushouts.
Given a pushout square of the kind 0·1, again withX = M, we can form a new pushout

(0·2)

ªCA C

ªK *

where ΣCA denotes the fibrewise suspension of A over C; it is defined by taking
the homotopy colimit of the diagram C ← A → C. It naturally maps to ΣK (the
suspension of K). This modified diagram has more structure than the preceding one:
There is a cofibration C ∨C → ΣCA such that the composition C ∨C → ΣCA→ C
coincides with the fold map, and the composite map C ∨ C → ΣCA → ΣK is the
constant map to the basepoint.

Therefore, let DsC (K,C) be the category whose objects are contractible homotopy
pushouts A→ K ×C which are equipped with a cofibration C∨2 → A such that the
diagram
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C∨2 A

C
*× idC

fold

K× C

is commutative. A morphism A → A′ is a map which commutes with projection to
K × C and also commutes with the cofibration data. Set DsC (K,C)÷ |DsC (K,C)|.

The construction described above gives rise to a map

σC : D(K,C)→ DsC (ΣK,C) .

Our third result identifies the connectivity of this map in terms of dimCW K = k,
dimCW C = c, conn (K) = r and conn (C) = s.

Theorem C. The map

σC : D(K,C)→ DsC (ΣK,C)

is (2r + s−max (k, c) + 2)-connected.

Note that the range where σC induces a bijection of components is typically larger
than the range stated in Theorem A(2). In a future paper, we will show how to
generalize Theorem C to a wider range (roughly 2(r + s)−max (k, c), an additional
gain of about r). This will be important for geometric applications.

Contractible pushouts naturally arise from polyhedra embedded in euclidean space.
For instance, let Y ⊂ Rn be a finite polyhedron. Let K denote a closed regular neigh-
borhood of Y , C the closure of its complement and A = ∂K = ∂C. Then A maps to
both K and C with Rn as the pushout.

This example is the real motivation for writing this paper. In fact, homotopy
theoretic information about spaces of pushouts has implications for the theory of
Poincaré embeddings. The connection is evident from the definition: A Poincaré
embedding from a Poincaré spaceK to a Poincaré spaceX is just a pushout diagram
involving K and having pushout X, plus additional duality constraints. I will be
using the results/methods of this series of papers to classify Poincaré embeddings in
a wide range (see [4] for a restricted case of this programme in euclidean space).

0:4. Outline. Section 1 is language. In Section 2 we prove an approximation result
for homotopy pushout diagrams which says, roughly, that if we are given a pushout
square in which the terminal vertex is highly connected, then the square may be
replaced by another pushout square in which the terminal vertex is contractible. In
Section 3 we prove the first part of Theorem A; the proof is basically a modification
of a result of Waldhausen. In Section 4 we prove the second part of Theorem A. The
main tool for the proof is the EHP-sequence for stable homotopy. In Section 5 we
prove Theorem B; its proof relies on Quillen’s ‘Theorem B’. In Section 6 we prove
Theorem C. Here, the main tool will be a combination of Theorem A(1) together
with Goodwillie’s generalized Blakers–Massey theorem and its dual for n-dimensional
cubes of spaces.
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1. Conventions

Let Top denote the category of compactly generated spaces, and let TopM de-
note the category of compactly generated, based spaces. Unless otherwise stated,
the spaces of this paper which appear as single upper case letters A,B,C, . . . (and
also their descendents A′, B1, . . . etc.) will always be objects of TopM which are
equipped with non-degenerate basepoints. Unless otherwise stated, they will also
have the homotopy type of a finite CW complex. In particular, the objects of the
categories D(K,C), E(K,C) etc., of the introduction are defined using 1-connected,
non-degenerately based spaces which have the homotopy type of a finite CW com-
plex. Function spaces are to be given the compact-open topology. The term cofibra-
tion means a closed inclusion which satisfies the homotopy extension property. This
paper uses facts about homotopy colimits and homotopy limits in TopM. A standard
reference for homotopy limits and colimits is [1] (who work instead in the category
of based simplicial sets; for a treatment in TopM, see [3]).

We will be observing the following (standard) connectivity conventions: A map
X → Y of unbased spaces is said to be 0-connected if π0(X) maps onto π0(Y ). It
is called r-connected, for r > 0, if π0(X) maps bijectively onto π0(Y ) and for all
basepoints in X, the map πi(X)→ πi(Y ) is a surjection for i 6 r and an isomorphism
for i < r. Every map is (−1)-connected.

2. Converting highly connected pushouts into contractible ones

Let

K ← B → C

be a diagram of 1-connected, based spaces. As in the introduction, we set dimCW K =
k and dimCW C = c. Let P denote the homotopy pushout of the diagram.

Lemma 2·1. Suppose that the homotopy pushout of the diagram is j-connected, where
k, c 6 j. Then there exists a space A and a (j − 1)-connected map A→ B such that the
homotopy pushout of the associated diagram

K ← A→ C

is contractible.

Proof. If j = 0, 1, then K and C are automatically contractible and we can take
A to be a point. So for the rest of the proof, we may take j > 2.

Without loss in generality we may assume that B is a CW complex, and that
the maps B → K and B → C are cofibrations. Denote these maps by u and u′

respectively. LetBt denote the t-skeleton ofB. Then the mapBj → B is j-connected,
and the Mayer–Vietoris sequences imply that

K xBj C

is also j-connected. So without any further loss in generality, we can assume that
B = Bj .

It follows that there is a short exact sequence

0→ Hj+1(K xB C)→ Hj(B) −−−→uM⊕u′M Hj(K)⊕Hj(C)→ 0 ,
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and we have HM(K xB C) = 0 for M� j, j + 1. Moreover, the sequence splits, since
Hj(K)⊕Hj(C) is free abelian. The sequence shows that we have to kill the kernel of
the map uM ⊕ u′M : Hj(B)→ Hj(K)⊕Hj(C).

Since B is j-dimensional, there is an injection

Hj(B) ⊂−→ Hj(Bj , Bj−1)%πj(Bj , Bj−1) .

Furthermore, Hj(Bj , Bj−1)%Hj(K xB C) ⊕ T , for some free module T . Choose a
basis {αi}i∈I for T . Represent αi as a map αi: (Dj , Sj−1) → (Bj , Bj−1), using the
above injection. Let

α:
∨
i∈I

(Dj , Sj−1) −→ (Bj , Bj−1)

denote the union of the maps αi for i ∈ I.
Let A be given by

Bj−1 xα
∨
i∈I

Dj .

Then we obtain a (j − 1)-connected map A→ B, and it is straightforward to check
that the homotopy pushout of K ← A → C is contractible. Now if j > 2, it is
automatic that A is 1-connected. This establishes the result when j > 2.

When j = 2, then Amight not be simply connected, however, the first homology of
A is certainly trivial. Taking Quillen’s plus construction in this case yields a simply
connected space A+ and a factorization A → A+ → B. Then A+ → B satisfies the
conclusion of the lemma.

Definition 2·2. Let j be a positive integer or infinity. Define a category Dj(K,C)
whose objects are specified by a map of 1-connected, based spaces B → K × C such
that the homotopy pushout of the associated diagram K ← B → C is j-connected.
A morphism (B → K × C) → (B′ → K × C) is a ((j − 1)-connected) map B → B′

which commutes with the structure map to K × C. We set

Dj(K,C)÷ |Dj(K,C)| .

Note that D∞(K,C) is just D(K,C), and that there is a forgetful map Di(K,C)→
Dj(K,C) whenever i > j.

Corollary 2·3. Let dimCW K = k, dimCW C = c and suppose that k, c 6 j. Then
the forgetful map

D(K,C) −→Dj(K,C)

induces a surjection on π0. If furthermore k, c 6 j− 1, then the map is also an injection
on π0.

Proof. Injectivity. Suppose that two contractible homotopy pushout diagramsA→
K × C and A′ → K × C are in the same component of Dj(K,C). This means that
there is a sequence of morphisms of Dj(K,C) represented, say, by

A = A0
a0←− A1

a1−→ · · · an−1←−−− An = A′ .

By the Mayer–Vietoris sequence, we infer that ai is a (j−1)-connected map of spaces.
By 2·1, there exist maps Bi −→Ai for 0 6 i 6 n, with Bi 1-connected, and where the
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map on reduced homology

HM(Bi)−→% HM(K)⊕HM(C)

is an isomorphism for all i. It follows by [9] that Bi is the homotopy type of a CW
complex of dimension 6 j − 1; this uses the hypothesis k, c 6 j − 1.

Let Ai −→ Ai′ be one of the maps in the above sequence, where |i − i′| = 1. By
elementary obstruction theory, there exists a map Bi −→Bi′ such that the diagram

Bi Bi′

Ai Ai′

is commutative up to homotopy. It follows that the mapBi → Bi′ is (j−1)-connected.
But the isomorphism HM(Bi)%HM(K)⊕HM(C) together with Whitehead’s theorem
then implies that the map Bi → Bi′ is actually a homotopy equivalence. Let Ti
denote the mapping cylinder of this homotopy equivalence.

There are then maps of spaces over K × C

Aj−1
i

'−→ Ti
'←− Aj−1

i′

which define a finite chain of morphisms fromA −→K×C toA′ −→K×C in D(K,C).
This establishes injectivity.

Surjectivity. Let B → K × C be an object of Dj(K,C), with k, c 6 j. By 2.1
there exists a (j− 1)-connected map A→ B, with A simply connected such that the
homotopy pushout of K ← A→ C is contractible. Surjectivity follows.

3. Proof of Theorem A(1)

3·1 The assignment

K,C 7→ D(K,C)

is a homotopy functor in the following sense: If K → K ′ and C → C ′ are homotopy
equivalences, then there is an induced map D(K,C) → D(K ′, C ′) which is also a
homotopy equivalence. The map is given by associating to a contractible homotopy
pushout diagram A→ K × C the composite A→ K × C → K ′ × C ′.

Given K, let G denote the geometric realization of the Kan loop group of the
total singular complex of K. Thus G is a topological group object in the compactly
generated topology; it is a topological group model for the loop space ofK. Therefore
the classifying space BG is homotopy equivalent to K. Similarly, let H denote the
realization of Kan loop group of the total singular complex of C. It follows that
D(K,C) ' D(BG,BH).

Let A → BG × BH be an object of of D(BG,BH), and let α ∈ π0(D(BG,BH))
denote its path component. Let Ã denote the pullback of the diagram

EG× EH → BG×BH ← A .

Then Ã is a space equipped with a free action of G×H. Note that Ã is also equipped
with a basepoint. However, the basepoint is not left fixed under the action of G×H.
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Set

Mα÷AutG×H(Ã) ,

the equivariant homotopy automorphisms of Ã which preserve the basepoint. This
is by definition the topological monoid given by realizing (the underlying simplicial
set) of the following simplicial monoid: in simplicial degree k we take theG×H-maps

Ã ∧ ∆k+ → Ã

whose underlying map of spaces is a weak homotopy equivalence (here Ã∧∆k+ denotes
Ã × ∆k with M × ∆k collapsed to a point); by the equivariant Whitehead theorem,
such a map is also a G×H-homotopy equivalence in the strong sense. Therefore Mα

has the structure of a group-like topological monoid (in the compactly generated
topology).

Let Dα(BG,BH) denote connected component of D(BG,BH) corresponding to
α ∈ π0(D(BG,BH)). There is then a decomposition

D(BG,BH) =
∐
α

Dα(BG,BH) .

To prove Theorem A(1) it will be sufficient to establish the following:

Claim 3·2. There is a homotopy equivalence

BMα ' Dα(BG,BH) .

To prove the claim, let hC(G×H)α be the category whose objects are G×H-spaces
Y equipped with a (non-equivariant) basepoint. Additionally, we assume that there
exists a chain of equivariant weak equivalences starting with Ã and terminating in
Y , each of which preserves the basepoint. Objects are also subject to the condition
that they are the weak equivariant homotopy type of a free G × H-CW complex.
A morphism of hC(G × H)α is a strong equivariant homotopy equivalence which
preserves the basepoint.

There is a functor F : Dα(BG,BH) → hC(G × H)α which maps an object A′ →
BG×BH to the pullback of

EG× EH → BG×BH ← A′ .

There is a functor in the other direction defined by mapping a space Y with (G×H)-
action to its Borel construction

Y ×G×H EG× EH ,

where the latter is a considered as a space over BG×BH by means of the projection
away from Y .

It is relatively straightforward to check that the composites give functors

Dα(BG,BH)→ Dα(BG,BH) and hC(G×H)α → hC(G×H)α

which admit natural transformations to the identity (for an argument along these
lines, see [8, 2·1·3] and [5, 1·3]).

Thus Dα(BG,BH) and hC(G × H)α have homotopy equivalent realizations. We
are therefore reduced to the problem of showing that the realization of hC(G×H)α
is equivalent to the classifying space of Mα.
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Let hC•(G ×H)α denote the simplicial category which in degree k has the same

objects as hC(G×H)α, but where a morphism from an object Y to an object Z is a
k-parameter family of morphisms of hC(G×H)α, i.e. a map Y ∧ ∆k+ → Z such that
Y × t→ Z is a morphism of hC(G×H)α for each t ∈ ∆k.

By considering hC(G × H)α as a simplicial subcategory of hC•(G × H)α using
constant families, we obtain an inclusion functor

hC(G×H)α → hC•(G×H)α

The simplicial monoid Mα = AutG×H(Ã) is just the simplicial full subcategory of
hC•(G×H)α which in every degree consists of the single object Ã.

The claim now follows by

Lemma 3·3. The inclusions

hC(G×H)α → hC•(G×H)α ←Mα

induce equivalences on realization (i.e. classifying spaces).

Waldhausen has proven an analogue of this result for categories of spaces having
equivariant basepoints (see [8, 2·2·5]. The proof of 3·3 uses what is essentially the
same argument. We therefore leave the task of checking details to the reader. This
completes the proof of Theorem A(1).

3·4 We end this section with an alternative description up to homotopy of the
topological monoids Mα.

Let A→ K×C be an object of D(K,C) which represents a point in the component
Dα(K,C). Without loss in generality, we may assume that A→ K×C is a fibration,
and that K = BG,C = BH. Let Aut/K×C(A) denote the topological monoid of fibre
homotopy equivalences A → A which preserve the basepoint. Then there is a weak
homotopy equivalence

Aut/K×C(A) 'Mα ,

which is induced by taking the base change of a fibre homotopy equivalence A→ A
along EG× EG→ K × C.

4. Proof of Theorem A(2)

4·1. We begin by recalling the EHP-sequence for stable homotopy, which for a
space X, gives a functorially associated sequence

X
E−→ Q(X) H−→ Q(X∧2)hZ/2 , (4·2)

where Q(X) = Ω∞Σ∞(X) is the stable homotopy of X,

Q(X∧2)hZ/2÷Q(EZ/2+ ∧Z/2 X
∧2)

denotes the quadratic construction on X, the map E is the evident inclusion and H
denotes the Segal–Snaith–Hopf invariant (see [7]). It is known that this sequence is
a fibration up to homotopy in range 3conn (X) + 1, i.e. there is a preferred map from
X into the homotopy fibre of H which is (3conn (X) + 1)-connected.

Clearly, a map X → Y of based spaces induces a map Q(X∧2)hZ/2 → Q(Y ∧2)hZ/2.
More generally, the following is also true.
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Lemma 4·3. The homotopy functor

X 7→ Q(X∧2)hZ/2

factors through the stable category up to natural equivalence. In particular, a stable map
ΣmX → ΣmY induces a map

Q(X∧2)hZ/2 → Q(Y ∧2)hZ/2 .

Proof. The quadratic construction can be performed in the category of spectra.
Namely, to a spectrum E we can associate the smash product E∧2; this is a spectrum
with Z/2-action. We may therefore form its homotopy orbit spectrum E∧2

hZ/2. Let
Ω∞E∧2

hZ/2 denote its zeroth space. If E = Σ∞X, it follows that Ω∞E∧2
hZ/2 is just

Q(X∧2)hZ/2, up to natural equivalence.

Corollary 4·4. Let A→ K×C represent a contractible homotopy pushout diagram.
Then there is a natural weak equivalence

Q(A) ' Q(K ∨ C) ,

and there is a natural weak equivalence

Q(A∧2)hZ/2 ' Q((K ∨ C)∧2)hZ/2

' Q(K∧2)hZ/2 ×Q(C∧2)hZ/2 ×Q(K ∧ C) .

Proof. The composite map

ΣA c−→ ΣA ∨ ΣA −→ ΣK ∨ ΣC = Σ(K ∨ C)

is a weak homotopy equivalence, where c denotes the comultiplication (the pinch
map). Applying 4·3 to this map yields the second part.

For the first part, we just apply the functor ΩQ(−) to this map.

4·5. Construction. Let

HK : Q(K)→ Q(K∧2)hZ/2 and HC : Q(C) −→Q(C∧2)hZ/2

denote the Segal–Snaith–Hopf maps. If

f : K ∨ C → Q(K ∧ C)

is a map, then we obtain an induced map

fQ: Q(K ∨ C)→ Q(K ∧ C)

by taking its infinite loop envelope. Also, let

π: Q(K ∨ C)→ Q(K ∧ C)

denote the (non-infinite loop) map defined by the composition

Q(K ∨ C) '−→ Q(K)×Q(C) ∧−→ Q(K ∧ C) ,

where the second map is defined by

(u: Sn1 → Sn1 ∧K, v: Sn2 → Sn2 ∧ C) 7→ (u ∧ v: Sn1 ∧ Sn2 → Sn1 ∧ Sn2 → K ∧ C) .

Lastly, let

fQ + π: Q(K ∨ C)→ Q(K ∧ C)
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denote the composition

Q(K ∨ C)
fQ, π−−−→ Q(K ∧ C)×Q(K ∧ C) +−→ Q(K ∧ C) ,

where the second map of the composite denotes addition.
Then HK , HC and fQ and π combine to yield a map

(HK , HC , fQ + π): Q(K ∨ C) −→ Q(K∧2)hZ/2 ×Q(C∧2)hZ/2 ×Q(K ∧ C) .

Let P2(K) denote the homotopy fibre of HK , P2(C) denote the homotopy fibre of HC

and let Wf denote the homotopy fibre of (HK , HC , fQ). There is then a commutative
diagram

Wf

P2(K) × P2(C) Q(K) × Q(C) Q (K∧2)h:/2 × Q (C∧2)h:/2

Q (K ∨ C) Q (K∧2)h:/2 × Q (C∧2)h:/2 × Q (K ∧ C)
(HK, HC, fQ+π)

(HK, HC)

where the vertical maps are the evident ones and the horizontal maps are fibrations
up to homotopy. Let Bf be defined as the homotopy pullback of the diagram

K × C → P2(K)× P2(C)←Wf .

Then Bf is a space over K × C.

Proposition 4·6. The homotopy pushout of

K ← Bf → C

is 3 min (r, s)-connected, where r = connK and s = connC.

Proof. By homotopy excision, the EHP-sequence

K → Q(K)→ Q(K∧2)hZ/2

is also a cofibration sequence up to homotopy in the range 3r+2. This means that the
map from the homotopy cofibre of K → Q(K) into Q(K∧2)hZ/2 is (3r+ 2)-connected.
Similarly, C → Q(C)→ Q(C∧2)hZ/2 is a cofibration sequence up to homotopy in the
range 3s + 2.

For any f : K ∨ C → Q(K ∧ C) the map

(HK , HC , fQ + π): Q(K ∨ C)→ Q(K∧2)hZ/2 ×Q(K∧2)hZ/2 ×Q(K ∧ C)

is (min (r, s)+1)-connected. Therefore, homotopy excision implies that the homotopy
fibration sequence

Wf −→Q(K ∨ C)
(HK , HC , fQ+π)−−−−−−−−−→ Q(K∧2)hZ/2 ×Q(K∧2)hZ/2 ×Q(K ∧ C)

is also a cofibration sequence up to homotopy in the range 3 min (r, s) + 2. As Bf is
defined to be the homotopy pullback of Wf along the (3 min (r, s)+1)-connected map
K×C −→ P2(K)×P2(C), it follows that Bf −→Wf is also (3 min (r, s)+1)-connected.
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Consequently, the sequence

Bf −→Q(K ∨ C)
(HK , HC , fQ+π)−−−−−−−−−→ Q(K∧2)hZ/2 ×Q(C∧2)hZ/2 ×Q(K ∧ C)

is a cofibration up to homotopy in the range 3 min (r, s) + 2.
Consider the diagram

K Q (K∧2)h :/2

Q (K ∨ C) Q(K∧2)h:/2 × Q(C∧2)h:/2 × Q(K ∧ C)

C Q (C) Q (C∧2)h:/2

Bf

Q (K)

The homotopy pushout of the middle column can be identified with the join
Q(K) M Q(C) (here we are using the identification Q(K ∨ C) ' Q(K) × Q(C)). The
homotopy pushout of the third column admits a natural map to ΣQ(K ∧ C) which
is a weak equivalence in our range. The induced map of homotopy pushouts from
the middle column to the third column can be identified up to homotopy within the
range as the Hopf construction of the map

Q(K)×Q(C)
fQ+π−−−→ Q(K ∧ C) .

The homotopy class of the Hopf construction is independent of the choice of f since
the Hopf construction is essentially a suspended difference map for the pair (fQ +
π, fQ). Thus we may as well take f to be the constant map to the base point. In
this instance the Hopf construction becomes a homotopy equivalence in our range.
Therefore the Hopf construction of fQ + π is also a homotopy equivalence in our
range.

Since the sequence

hocolim (K ← Bf → C)→ Q(K) MQ(C)→ ΣQ(K ∧ C)

is a cofibration up to homotopy in the range 3 min (r, s) + 2, it follows that
hocolim (K ← Bf → C) is 3 min (r, s)-connected, as claimed. q

Corollary 4·7. The assignment f 7→ Bf induces a map

Φ: {K ∨ C,K ∧ C} −→ π0(Dj(K,C)) ,

provided that j 6 3 min (r, s).

4·8. Construction. LetA→ K×C be an object of D(K,C). Then the Segal–Snaith–
Hopf invariant for A is then

HA: Q(A)→ Q(A∧2)hZ/2 .

Let K ∨ C −→Q(A) be the unique map up to homotopy such that the composition

K ∨ C −→Q(A) '−→ Q(K ∨ C)
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coincides with the canonical map up to homotopy, where the second map in this
composite is given by the first equivalence of 4·4.

Using as well the second equivalence of 4·4, we may take the composite

K ∨ C −→Q(A) HA−−→ Q(A∧2)hZ/2
'−→ Q(K∧2)hZ/2 ×Q(C∧2)hZ/2 ×Q(K ∧ C)

projecting onto the third factor, we obtain a map

gA: K ∨ C → Q(K ∧ C).

The assignment

(A −→K × C) 7→ gA

induces a map

Ψ: π0(D(K,C))→ {K ∨ C,K ∧ C} .

Remark 4·9. Here is a much simpler description of Ψ: A contractible homotopy
pushout A → K × C induces a map Q(A) → Q(K ∧ C) by taking the composite
A→ K ×C → K ∧C and applying Q(−). Let K ∨C → Q(A) be any map such that
the composite K ∨ C → Q(A) ' Q(K ∨ C) coincides with the canonical map up to
homotopy. Then the composite

K ∨ C → Q(A)→ Q(K ∧ C)

represents the application of Ψ to the diagram. We leave it to the reader to verify
this.

The following is now straightforward.

Lemma 4·10. Let j 6 3 min (r, s). Then the composite

π0(D(K,C)) Ψ−→ {K ∨ C,K ∧ C} Φ−→ π0(Dj(K,C))

coincides with the forgetful map.

Taking j = 3 min (r, s) and applying 2·3, we conclude

Corollary 4·11. The map

π0(D(K,C)) Ψ−→ {K ∨ C,K ∧ C}

is injective, provided that k, c 6 3 min (r, s)− 1.

To complete the proof of Theorem A(2), it suffices to check that traversing

{K ∨ C,K ∧ C} Φ−→ π0(Dj(K,C))� π0(D(K,C)) Ψ−→ {K ∨ C,K ∧ C}

from left to right is the identity. That the middle map is a surjection follows from
the hypothesis k, c 6 3 min (r, s) and 2·3.

Suppose that f :K∨C → Q(K∧C) is a map. Since by assumption k, c 6 3 min (r, s),
it follows that f factors uniquely up to homotopy as a map K ∨ C → K ∧ C. By
abuse of notation, we also call the latter map f . Let Af → K × C be the result
of applying the construction Φ to f , and then lifting arbitrarily by means of the
surjection π0(D(K,C))� π0(Dj(K,C)).
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Define a map Σ(K × C) −→ ΣK ∧ C by taking the composite

Σ(K × C)
pK+pC−−−−→ ΣK ∨ ΣC

Σf−→ ΣK ∧ C ,

where pK and pC are the projection maps onto K and C respectively. Call this map
f], and note that the composite of it with the inclusion Σ(K ∨ C) → Σ(K × C)
coincides with f up to homotopy.

It is straightforward to check, using the definition of Af via the construction 4·5,
that there is a cofibration sequence up to homotopy

ΣAf → Σ(K × C)
Σπ+f]−−−→ ΣK ∧ C ,

where the first map is the suspension of the natural map Af → K × C and
π: K × C → K ∧ C now denotes the quotient map K × C → K ∧ C. Moreover,
the sequence splits up to homotopy. In fact, let K MC → Σ(K ×C) denote the Hopf
construction of the identity map of K × C. Then, as is well-known, the composite

K M C
Hopf−−→ Σ(K × C) −→ ΣK ∧ C

is a homotopy equivalence. Let ΣK ∧ C → K M C be a homotopy inverse. Then the
composite ΣK ∧ C → K M C → Σ(K × C) gives a section to Σπ; denote this section
by s.

We claim that (Σπ + f]) ◦ s is stably homotopic to the identity. To see this, it is
sufficient to prove that f]◦s is null-homotopic. Now, f]◦s is given by the composition

ΣK ∧ C '−→ K M C
Hopf−−→ Σ(K × C)

pK+pC−−−−→ ΣK ∨ ΣC
Σf−→ ΣK ∧ C ,

and the composite in the middle (pK+pC)◦Hopf :KMC → ΣK∨ΣC coincides with the
sum of Hopf construction of the map pK : K×C → K with the Hopf construction of
the map pC :K×C → K. Each of these maps has a null-homotopic Hopf construction
(e.g. the map Hopf(pK): K MC → ΣK factors as K MC → K Mpt→ ΣK), so it follows
that f] ◦ s is null-homotopic. This establishes the claim.

Now suppose that g: K ∨C → K ∧C is the result of applying Φ, then arbitrarily
lifting from π0(Dj(K,C)) to π0(D(K,C)), and then applying Ψ. It follows from the
definition of Af and g that there is a homotopy commutative diagram of the form

ªAf ª(K× C) ªK ∧ C

ªK ∧ C

h    ,

ª(K× C)ªAf
ªπ + f#

ªπ +� g#

where h: ΣK ∧C → ΣK ∧C denotes a suitable homotopy equivalence. We therefore
obtain the equation

h(Σπ + f]) ' Σπ + g] .

Applying the section s on the right, we verify after a finite number of suspensions
that

h ' h(Σπ + f])s ' (Σπ + g])s ' id .
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thus h is stably the identity map. From this it follows that Σπ+f] is stably homotopic
to Σπ + g], whence f] is stably homotopic to g]. We conclude that f is homotopic to
g. This completes the proof of Theorem A(2).

5. Proof of Theorem B

5·1. Our Theorem B will be a consequence of Quillen’s Theorem B (see [6]). Let us
recall the statement of the latter. Let f : C → D be a functor. For an object d ∈ D,
recall that the comma category d\f has objects given by pairs (c, u) such that c is an
object of C and u is a a morphism d→ f (c). A morphism of d\f from (c, u) to (c′, u′)
is a map v: c → c′ such that f (v)u = u′. Note that a morphism w: d → d′ of D
induces a base change map

wM: d′\f → d\f .

Let f−1(d) be the subcategory of C which consists of objects c such that f (c) = d.
A morphism c → c′ is a map which induces the identity map of d after application
of f . There is a functor d = f−1(d)→ d\f defined by c 7→ (c, id).

Theorem 5·2 (Quillen [6]). Suppose that for every d ∈ D that the functor

f−1(d) −→ d\f

induces an equivalence on realizations. Additionally, suppose that every morphism
w: d→ d′ induces a homotopy equivalence

wM: d′\f −→ d\f .

Then the diagram

* D

Cf–1d

is homotopy cartesian, i.e. the sequence f−1d → C → D is a fibration up to homotopy
after taking realization.

In the introduction we defined E(K,C) = |E(K,C)|, where E(K,C) is the category
whose objects are contractible homotopy pushouts A′ → K ′×C ′ with K ′ homotopy
equivalent to K and C ′ homotopy equivalent to C. A morphism (A′ → K ′ × C ′)→
(A′′ → K ′′ × C ′′) is specified by homotopy equivalences K ′ → K ′′, C ′ → C ′′ and
A′ → A′′ such that the diagram

K″ × C″

A′ K′ × C′

A″

is commutative. Let hKTopM denote the category whose objects are based spaces X
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which are homotopy equivalent toK; a morphism is a homotopy equivalence of based
spaces. There is then a forgetful functor

E(K,C)
f−→ hKTopM × hCTopM

(A′ −→K ′ × C ′) 7−→ K ′ × C ′

If (K ′, C ′) ∈ hKTopM × hCTopM is an object, then f−1(K ′, C ′) is just D(K ′, C ′).
Moreover, by Waldhausen [8, 2·2·5], the realization of hKTopM × hCTopM is given

by BG(K)×BG(C), where G(K) denotes the topological group of based homotopy
automorphisms of K.

To establish the first part of our Theorem B, we need to show that there is a
homotopy fibration

D(K,C)→ E(K,C)→ BG(K)×BG(C) . (5·3)

hence, it will be sufficient to check that f : E(K,C) → hKTopM × hCTopM satisfies
the hypotheses of Quillen’s Theorem B.

For an object d ÷ (K ′, C ′) ∈ hKTopM × hCTopM, the comma category d\f has
objects given by (U → X×Y, a, b) whereU → X×Y denotes a contractible homotopy
pushout, and a: K ′ → X and b: C ′ → Y are based homotopy equivalences. The
functor f−1(d)→ d\f in this instance is given by

(A′ → K ′ × C ′) 7−→ (A′ → K ′ × C ′, idK′ , idC′) .

Let g: d\f → f−1(d) be the functor given by the assignment

(U → X × Y, a, b) 7−→ (U M → K ′ × C ′) ,

where U M is defined as follows: let Ufib → X × Y be U → X × Y converted into
a fibration. Then U M is the pullback of this fibration along the map
(a, b): K ′ × C ′ → X × Y . The composite functor g ◦ f : f−1(d) → f−1(d) is given
by

(A′ → K ′ × C ′) 7−→ (A′fib → K ′ × C ′) ,

where A′fib → K ′ × C ′) is the result of converting A′ → K ′ × C ′ into a fibration.
Since there is a natural homotopy equivalence A′ → A′fib which covers the identity
map of K ′ ×C ′, we obtain a natural transformation of the identity functor to g ◦ f .

On the other hand, f ◦ g: d\f → d\f is the functor which is given by

(U → X × Y, a, b)→ (U M → K ′ × C ′, idK′ , idC′) ,

where U M is the result of pulling back the fibration Ufib −→ X × Y along the map
(a, b). The chain of homotopy equivalences

U M
'−→ Ufib '←− U

define a chain of natural transformations from f ◦g to the identity. We infer that f is
a homotopy equivalence. This establishes the first condition of Quillen’s Theorem B
for the functor f .

To establish the second condition, let d÷ (X,Y )→ (W,Z)÷ d′ denote a morphism
of hKTopM × hCTopM, i.e. a based homotopy equivalence r1: X → W and a based
homotopy equivalence r2: Y → Z. We need to show that the base-change functor
(r1, r2)M: d′\f → d\f is a homotopy equivalence.
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Let si denote based homotopy inverses to ri, i = 1, 2. Then (s1, s2) is a morphism of

hKTopM×hCTopM and therefore induces a base-change functor (s1, s2)M: d′\f → d\f .
Consider the composite

d′\f (r1, r2)M−−−−→ d\f (s1, s2)M−−−−→ d′\f .

This is given on objects by

(A′ −→K ′ × C ′, a, b) 7−→ (A′ −→K ′ × C ′, r1s1a, r2s2b) .

Choose homotopies Hi from ri ◦si to the identity. The Hi then determine a simplicial
homotopy (s1, s2)M ◦ (r1, r2)M to the identity after taking nerves. Similarly, (r1, r2)M ◦
(s1, s2)M is simplicially homotopic to the identity on the level of nerves.

The above arguments establish the conditions for Quillen’s Theorem B for the
functor f : E(K,C) → hKTopM × hCTopM; this establishes that 5·3 is a fibration up
to homotopy.

To complete the proof of our Theorem B we need to construct a section for f . Let
σ: hKTopM × hCTopM → E(K,C) be the functor defined by

(K ′, C ′) 7→ (K ′ ∨ C ′ ⊂−→ K ′ × C ′) .

Then f ◦ σ is the identity.
Finally, since BG(K) × BG(C) is a connected space, and σ is a section, we have

that π0(D(K,C) = π0(E(K,C)). The splitting

ΩE(K,C) ' ΩD(K,C)×G(K)×G(C)

is defined by

ΩD(K,C)× Ω(BG(K)×BG(C)) i×Ωσ−−−→ ΩE(K,C)× ΩE(K,C) m−→ ΩE(K,C) ,

where i: ΩD(K,C) → ΩE(K,C) is the inclusion, m denotes loop multiplication,
and we use the homotopy equivalence G(K) × G(C) ' Ω(BG(K) × BG(C)) (which
exists because G(K) and G(C) are group-like). This completes the proof of our
Theorem B. q

6. Proof of Theorem C

Let

σC : D(K,C)→ DsC (ΣK,C)

denote the stabilization map defined in the introduction.
6·1. Digression. Let

Y → Z → C

maps of based spaces. Let Z → C be α-connected and Y → Z be β-connected. Let
fib(Y ↓ Z) denote the homotopy fibre of Y → Z. Let ΣCY as usual denote the (based)
homotopy colimit of C ← Y → C, and let ΣCY → ΣCZ denote the induced map.
There is then a commutative of based spaces



318 John R. Klein

fib(C $ C)D*

fib(ªCY $ ªCZ)

(6·2)

*Dfib(C $ C)

fib(Y $ Z)

(where the maps fib (C ↓ C)→ fib (ΣCY ↓ ΣCZ) are defined using the two inclusions
C → ΣCY ).

Lemma 6·3. The diagram is (min (α, β) + β − 1)-homotopy cartesian. I.e. the weak
map

fib (Y ↓ Z)→ Ω fib (ΣCY ↓ ΣCZ)

is (min (α, β) + α− 1)-connected.

Proof. This will be a consequence of Goodwillie’s generalized Blakers–Massey the-
orem for n-dimensional cubes of spaces ([2, 2·5]; in our context, n = 3). Let us review
the statement of the theorem. Suppose that X denotes a n-dimensional cube of spaces,
specified as a functor X: 2n → TopM, where n = {1, 2, . . . , n}, and 2n denotes the
poset of subsets of n. For any subset T ⊂ n, let ∂TX denote the sub-cube of dimen-
sion |T | given by restricting to 2T . Suppose that ∂TX is k(T )-homotopy cocartesian;
this means that the map

hocolim
→
SõT

X(S) −→X(T )

is k(T )-connected. Moreover, assume that k(T ) 6 k(U ) whenever T ⊂ U .
Then Goodwillie’s result says that X is k-homotopy cartesian, where k is the min-

imum of

1− n +
∑
α

k(Tα),

over all partitions {Tα} of n by non-empty sets. The term k-homotopy cartesian means
that the map from the initial vertex X(6) to the homotopy limit of the ‘initially
punctured’ cube (i.e. delete X(6)) has connectivity k.

Consider the 3-cube

C

ªCZC

C

CZ

Y

ªCY

Thus Y is the initial vertex, Z corresponds to the vertex {2}, ΣCY corresponds
to the vertex {1, 3}, ΣCZ is the terminal vertex {1,2,3}, and C corresponds to the
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vertices {1}, {3}{1, 2}, {2, 3}. The two maps C → ΣCY are given by the natural
inclusions which define ΣCY ; similar remarks apply to ΣCZ. As is, this cube is not
commutative. However, it is naturally rectifiable to a commutative one by replacing
the vertices labelled by C with suitable mapping cylinders.

Note that the vertical homotopy fibres of the cube give rise to the square 6·2. It
follows that the connectivity of the map fib (Y ↓ Z) → Ω fib (ΣCY ↓ ΣCZ) equals
the extent to which the cube is homotopy cartesian.

From the data it is elementary to compute the numbers k(T ):

k(1) = k(3) = min (α, β), k(2) = α, k(1, 2) = k(2, 3) = α + 1,
k(1, 3) =∞, k(1, 2, 3) =∞ .

It follows from the formula that X is (min (α, β) + α− 1)-homotopy cartesian. q

Now suppose that Y → Z and W → Z are spaces over Z, where W −→ Z is a
fibration. Let

F/Z(Y,W )

denote the function space of based maps from Y to W which commute with the
structure map toZ. IfW → Z is not a fibration, then defineF/Z(Y,W ) asF/Z(Y,W fib)
where W fib → Z denotes W → Z converted into a fibration.

If u: U → Y is a cofibration and u: U →W is a map over Z, let

F/Z(Y,W ; rel u)

denote the fibre of the fibration

F/Z(Y,W )→ F/Z(U,W )

over the composite U u−→W −→W fib. Suppose additionally that Z is a space over C.
We define a suspension map

F/Z(Y,W ) −→ F/ΣCZ(ΣCY,ΣCW ; relφC)

where φC : C ∨C → ΣCW is the natural map. The map is defined by sending Y →W
to the induced map ΣCY → ΣCW → (ΣCW )fib considered as a morphism over ΣCZ.

Lemma 6·4. Suppose that dimCW Y = y, that W → Z is α-connected and that the
Z → C is β-connected. Then the map

F/Z(Y,W )→ F/ΣCZ(ΣCY,ΣCW ; relφC)

is (min (α, β) + α− y − 1)-connected.

Proof. For a based space U , let ±TopM/U denote the following category: an object
consists of a based map X → U together with a based map U ∨U → X such that the
composite U ∨ U → X → U is the fold map. To keep notation short, we ignore the
structure data and denote this object simply as X. A morphism X → X ′ is a map
of underlying spaces which commutes with projection to U and with the structure
map from U ∨ U .

If TopM/U denotes the category of based spaces over the based space Z, it follows
that suspension over U defines a functor

ΣU : TopM/U → ±TopM/U
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This functor admits a right adjoint,

ΩU : ±TopM/U → TopM/U

which maps an object X to the object given by

holim (U
i−−→ X

i+←− U ),

where i± denote the restrictions of U ∨ U → X to each summand; the homotopy
limit is to be taken in the category of based spaces.

Remark 6·5. If i− = i+, then the functor ΩU is a fibrewise loop space for retrac-
tive spaces over U . However, when i− and i+ are different, the construction gives
something else.

Using this adjoint functor pair with U = C, it is straightforward to verify that
there is a weak equivalence

F/ΣCZ(ΣCY,ΣCW ; relφC) ' F/ΩCΣCZ(Y,ΩCΣCW ),

where in the target, we are considering both Y and ΩCΣCW as spaces over ΩCΣCZ
in the evident way.

Thus, it will suffice to show that the natural map W → ΩCΣCW induces an
(min (α, β) + α− y − 1)-connected map of function spaces

F/Z(Y,W )→ F/ΩCΣCZ(Y,ΩCΣCW ) . (6·6)

Consider the commutative diagram

W

XCªCZ

(6·7)

Z

XCªCW

The left-hand vertical homotopy fibre of (6·7) is fib (W ↓ Z). The right-hand vertical
homotopy fibre of (6·7) is Ω fib (ΣCW ↓ ΣCZ). By 6·3, the map of homotopy fibres

fib (W ↓ Z)→ Ω fib (ΣCW ↓ ΣCZ)

is (min (α, β)+α−1)-connected. It follows that (6·7) is (min (α, β)+α−1)-homotopy
cartesian.

This implies that the map (6·6) is (min (α, β) + α − 1 − y)-connected, as taking
function spaces drops the connectivity by the dimension of the space in the domain.
This completes the proof of 6·4. q

For Y → Z, let

A/Z(Y ) ⊂ F/Z(Y, Y )

denote the subspace given by maps Y → Y fib over Z which are weak homotopy equiv-
alences; thus A/Z(Y ) is just a set of connected components of F/Z(Y, Y ). Similarly,
let

A/ΣCZ(ΣCY relφC) ⊂ F/ΣCZ(ΣCY,ΣCY ; relφC)
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be given by the maps ΣCY → ΣCY which are weak homotopy equivalences. Suspen-
sion over C then induces a map

A/Z(Y )→A/ΣCZ(ΣCY ; relφC) .

Proposition 6·8. Suppose dimCW Y = y, Y → Z is α-connected and Z → C is
β-connected. Then the map

A/Z(Y )→A/ΣCZ(ΣCY ; relφC)

is (min (α, β) + α− 1− y)-connected.

Proof. The diagram

!/ªCZ (ªCY ; rel φC)

F/ªCZ (ªCY, ªCY; rel φC)

!/ªCZ (Y )

F/ª (Y, Y )

is a set theoretic pullback (since a map Y → Y fib over Z is a weak equivalence if and
only if it is one after applying ΣC(−)), and the vertical maps are the inclusions of a
set of components. Since the bottom map is (min (α, β) + α − 1 − y)-connected (by
6·4), it follows that the top one is also.

Corollary 6·9. Let dimCW K = k, dimCW C = c, and let K be r-connected and C
be s-connected. Suppose that A→ K×C denotes a contractible homotopy pushout. Then
the map

BAut/K×C(A)→ BAut/(ΣK)×C(ΣCA; relφC)

is (2r + s−max (k, c) + 2)-connected.

Proof. Take Y = A, Z = K × C and C = C in 6·8. In this instance, dimCW Y =
max (k, c), α = r + s + 1, and β = r + 1. It follows that the map

A/K×C(A)→A/(ΣK)×C(ΣCA; relφC)

is (2r + s−max (k, c) + 1)-connected.
On the other hand, Aut/K×C(A) was defined to be the topological monoid of based

homotopy automorphisms of Afib → Afib which commute with projection to K × C.
The canonical map

Aut/K×C(A)→A/K×C(A)

which maps a homotopy automorphism Afib → Afib to its restriction A→ Afib → Afib

is therefore a weak equivalence (since A→ Afib is a weak equivalence). Similarly, the
canonical map

Aut(ΣK)×C(ΣCA; relφC)→A(ΣK)×C(ΣCA; relφC)

is also a weak equivalence. It follows that the homomorphism

AutK×C(A)→ Aut(ΣK)×C(ΣCA; relφC)
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of group-like topological monoids, given by applying ΣC(−), is (2r+s−max (k, c)+1)-
connected. The map on classifying spaces is therefore (2r + s − max (k, c) + 2)-
connected.

6·10. Proof of Theorem C. By 6·9 and Theorem A(1), the proof of Theorem C is
reduced to the problem of establishing that

σC : D(K,C)→ DsC (ΣK,C)

is induces surjection on path components when k, c 6 2r + s + 2, and an injection
when k, c 6 2r + s + 1.

Surjectivity 6·11. Let V → (ΣK) × C (equipped with C ∨ C � V ) be an object
of DσC (ΣK,C). Note that ΩCΣC(ΣK × C) ' (ΩΣK) × C. Consider the homotopy
cartesian square

B

(XªK) × C

(6·12)

K × C

XCV

where B is defined to be the pullback of the evident maps K ×C −→ (ΩΣK)×C and
(ΩCV )fib −→ (ΩΣK)× C.

Claim 6·13. The homotopy pushout of K ← B → C is (2r + s + 2)-connected.
Moreover, B is 1-connected.

Proof of Claim. Since K × C → (ΩΣK) × C is 2r + 1 > 3-connected, it follows
that B is 1-connected if and only if ΩCV is 1-connected. But the structure maps
i±: C → V have homotopy cofibre identified with ΣK up to homotopy. Since V and
C are 1-connected and since ΣK is r+1 > 2 connected, Whitehead’s theorem implies
that i± are 2-connected. From this it follows that ΩC → C is 2-connected as well.
As C is 1-connected, ΩCV must also be 1-connected. This proves the second part of
the claim.

The first part of the claim will follow from Goodwillie’s dual to the generalized
Blakers–Massey theorem [2, 2·6]. We recall the statement of this result. Let X denote
an n-cube of spaces, with the notation as in the proof of 6·3. For T ⊂ n, define a
subcube ∂TX to be the |n − T |-cube given by composing X: 2n → TopM with the
embedding 2n−T → 2n defined by

V 7→ V x T .

Suppose for each T �n that ∂TX is k(n − T )-homotopy cartesian, and that k(T ) 6
k(U ) whenever T ⊂ U . Then X is k-homotopy cocartesian, where k is the minimum
of

n− 1 +
∑
α

k(Tα),

over all partitions {Tα} of n by non-empty subsets.
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Consider the 3-cube

C

ª(K) × CC

C

C

B

V

K× C

In our situation n = 3, and the numbers k(T ) are given by

k(1) = k(3) = r + 1, k(2) = r + s + 1, k(1, 2) = k(2, 3) = r + s + 1,

k(1, 3) = 2r + 1, k(1, 2, 3) =∞ .

It follows that the cube is (2r + s + 4)-homotopy cocartesian. This implies that the
map ΣCB → V is (2r+s+3)-connected (since the bottom face of the cube is homotopy
cocartesian).

We infer that the homotopy pushout of

ΣK ← ΣCB → C

is (2r + s + 3)-connected. Consider the commutative diagram up to homotopy

C ∨ C

* ªK

C

C ∨ C ªC B

ªC

ªK

ªB

fold

⊂

The horizontal rows are cofibration sequences up to homotopy. Taking homotopy
pushouts vertically results therefore in a cofibration sequence up to homotopy

M −→ hocolim (ΣK ← ΣCB → C) −→ Σ hocolim (K ← B → C) .

It follows that hocolim (K ← B → C) is (2r + s + 2)-connected. This establishes the
claim.

Using the claim, we see that the association

(V → (ΣK)× C,C ∨ C � V ) 7−→ (B −→K × C)

described above gives rise to a well defined map

π0(DsC (ΣK,C))→ π0(Dj(K,C))
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for j = 2r + s + 2, where Dj(K,C) is the space defined in 2·2. It is straightforward
to check that traversing

π0(DsC (ΣK,C)) −→ π0(Dj(K,C))� π0(D(K,C)) σC−→ π0(DsC (ΣK,C))

coincides with the identity (here we are using 2·3 to conclude that the middle map
is a surjection). Surjectivity follows.

Injectivity 6·14. Suppose that k, c 6 2r + s + 1. Let j = 2r + s + 2, and let

π0(DsC (ΣK,C))→ π0(Dj(K,C))

be the map defined in the previous paragraph. By construction, the composite

π0(D(K,C)) σC−→ π0(DsC (ΣK,C)) −→ π0(Dj(K,C))

coincides with the map induced by the inclusion D(K,C) ⊂ Dj(K,C). By 2·3, the
inclusion induces an injection on path components, and hence yields the injectivity
of σC on the level of path components. This concludes the proof of Theorem C.
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