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Abstract

We prove a relative Poincaré embedding theorem for maps of pairs into a Poincaré pair. This
result has applications: it is the engine of the compression theorem of the author’s paper in
Algebr. Geom. Topol. 2, (2002) 311–336, it yields a Poincaré space version of Hudson’s
embedding theorem, and it can be used to equip 2-connected Poincaré spaces with handle
decompositions.

1. Introduction

In [9], the author proved an embedding theorem for a finite complex equipped with a map to a
Poincaré complex. The aim of the present work will be to relativize this embedding result and
afterwards provide applications of it.

Here is the context in which we place ourselves: let (K , L) be a cofibration pair such that K and
L are homotopy finite. Let (X, ∂ X) be a Poincaré space of dimension n. Suppose that

f := ( fK , fL) : (K , L)→ (X, ∂ X)

is a map such that fL : L → ∂ X is the underlying map of a specified Poincaré embedding (of the
kind that was called a PD embedding in [9]). Then we ask the following.

QUESTION 1 Can one find an extension of the given embedding of L in ∂ X to a relative Poincaré
embedding K in X with underlying map f ?

Roughly, a relative Poincaré embedding of (K , L) in (X, ∂ X) is a decomposition of (X, ∂ X) up
to homotopy as

(K , L) ∪(AK ,AL ) (CK , CL),

such that

• K inherits the structure of an n-dimensional Poincaré space with boundary L ∪AL AK (AK is
called the gluing space, or normal data),

• CK (the complement of K ) is a Poincaré space with boundary AK ∪AL CL ,

• L inherits the structure of a Poincaré space with boundary AL , and

• CL is a Poincaré space with boundary AL .

†
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In other words, a relative Poincaré embedding is a certain kind of ‘Poincaré stratification’ of the
pair (X, ∂ X) having two strata (the codimension zero stratum given by (K � CK , L � CL) and
the codimension one stratum given by (AK , AL)). For the exact definition, see 2.2 below. The
decomposition of (X, ∂ X) is depicted in Fig. 1.

If K is obtained from L up to homotopy by attaching cells of dimension at most k, we say that
the relative dimension of (K , L) is at most k and we write dim(K , L) � k. The main result of this
paper is that Question 1 has an affirmative answer when the map fK has sufficient connectivity.

THEOREM A Suppose that fK : K → X is r-connected. Then f Poincaré embeds, relative to the
given embedding of L in ∂ X, provided k � n−3 and r � 2k − n + 2.

REMARK 1.1 This is the Poincaré version of a result of Hodgson giving criteria for a finite CW
pair to embed up to homotopy in a PL manifold with boundary [4] (actually, our Poincaré version
suffers from a loss of one dimension in the connectivity estimate

†
). When X is a PL manifold

we can apply the Browder–Casson–Sullivan–Wall theorem [17, Chapter 11] to recover Hodgson’s
manifold result.

REMARK 1.2 A special case occurs when K and X are highly connected: in this instance any
map fK will be highly connected, and will therefore Poincaré embed relative to L . Thus we get a
Poincaré version of a result of Irwin [6].

Overview of the proof

As in [9], our proof will be homotopy theoretic: we begin by constructing a relative embedding
in stable codimension, by replacing X with X×D j . By downward induction on codimension, it is
then enough to consider the case j=1.

Let (WK , WL) be the complement of a relative Poincaré embedding of the composite

(K , L)
f→ (X, ∂ X) ⊂ (X×I, ∂(X×I )) .

†
Whether the dimension loss phenomenon in the Poincaré case is real or merely a defect of the technique of proof is

currently unknown. The dimension loss was already observed in certain cases by Levitt [12, p. 402]. However, in the
metastable range, when L = ∅ one can recover the lost dimension (see [8, Theorem F]).
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Then WL is automatically a fibrewise suspension of a space over ∂ X . Moreover, the connectivity
assumption allows us to apply [9, Theorem 4.7] to fibrewise desuspend WK over X ; any choice of
fibrewise desuspension is then a candidate for the complement of a relative embedding of f .

We then need to find the glue which binds (K , L) with the chosen candidate for the complement.
This is obtained by applying the dual Blakers–Massey theorem for 3-cubes [2] and truncation
techniques developed in [9].

Applications

Theorem A was first announced in [8] and was the crux of the proof of the compression theorem
(the main result of that paper [8, Theorem A]). Furthermore, the compression theorem was shown
to have a variety of applications, including

• embeddings of spheres in Poincaré spaces [8, Theorem E],
‡

• a Levine style Poincaré embedding theorem [8, Theorem D],

• the existence of diagonal (that is, tangential) Poincaré embeddings [8, Corollary H], and

• a sharpening of the inequality of the main theorem of [9] by one dimension, with the additional
assumption that one is working in the metastable range [8, Theorem F] (cf. Remark 1).

We now give four additional applications of Theorem A.

Application 1: concordance

Let e0 and e1 be Poincaré embeddings with underlying maps f0, f1 : K → X , and suppose that we
are given a homotopy F : K×I → X from f0 to f1. In particular, we have an associated embedding
with underlying map f0� f1 : K×{0, 1} → ∂(X×[0, 1]); we donote this embedding by e. Consider
the associated map of pairs

F : (K × [0, 1], K × {0, 1})→ (X×[0, 1], ∂(X×[0, 1])) .

DEFINITION 1.3 A concordance from e0 to e1 is a Poincaré embedding of F relative to e.

The following is a fundamental uniqueness result for Poincaré embeddings; it complements the
main result of [9].

COROLLARY B Suppose e0, e1 and F are as above. Assume K is homotopy equivalent to a CW
complex of dimension at most k, and that (X, ∂ X) is a Poincaré space of dimension n. Let r denote
the connectivity of f0. Then e0 and e1 are concordant provided that k � n−3 and r � 2k − n + 3.

The result follows by applying Theorem A to the pair (F, e).

Application 2: Poincaré embeddings of disks

Let
f = ( fDk , fSk−1) : (Dk, Sk−1)→ (X, ∂ X)

be a map, with (X, ∂ X) a Poincaré space of dimension n. (Note that in what follows we do not a
priori assume that fSk−1 : Sk−1 → ∂ X is the underlying map of a Poincaré embedding.)

‡
See also [10]; this is a key ingredient in the approach to Poincaré surgery promulgated by Bill Richter and the author.
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THEOREM C Assume that (X, ∂ X) is (2k−n+2)-connected, X is 2-connected, and k � n−3. Then
f relatively Poincaré embeds.

REMARK 1.4 The PL version of Theorem C (due to Hudson [5]) is true without the assumption
that X is 2-connected. Furthermore, (X, ∂ X) is only required to be (2k−n+1)-connected in the PL
case. I suspect that Theorem C is actually true without the additional hypotheses.

Application 3: Poincaré cobordisms

By a Poincaré cobordism, we mean a Poincaré space W whose boundary has the form ∂W =
∂0W � ∂1W .

DEFINITION 1.5 A Poincaré cobordism is said to be elementary of index k (relative to ∂0W ) if

(1) W is, up to homotopy, obtained by attaching a single cell of dimension k to ∂0W , that is, the
inclusion ∂0W → W factors as

∂0W → (∂0W ) ∪ Dk �→ W .

(2) Similarly, W is obtained from ∂1W by attaching an (n − k)-cell, where n is the dimension of
(W, ∂W ) .

REMARK 1.6 When 3 � k � n−3, conditions (1) and (2) are equivalent (by [14]) to conditions (1)
and

(2)′ the pair (W, ∂1W ) is 2-connected.

EXAMPLE 1.7 One way to obtain an elementary Poincaré cobordism from a closed Poincaré space
∂0W of dimension n−1 is to take the trace of a surgery on a framed Poincaré embedded sphere in
∂0W : start with a codimension zero Poincaré embedding e : Sk−1×Dn−k ⊂ ∂0W with complement
C . This is just a Poincaré embedding diagram of the form

Sk−1×Sn−k−1 −−−−→ C


�



�

Sk−1×Dn−k −−−−→ ∂0W ,

that is, the gluing space of the embedding is specified to be Sk−1×Sn−k−1.
Define

W := (Dk×Dn−k×1) ∪e (∂0W × [0, 1]).
Then W is an elementary Poincaré cobordism of index k with

∂1W := Dk×Sn−k−1 ∪Sk−1×Sn−k−1 C.

Thus ∂1W is the effect of doing surgery on the framed embedding e, and W is the trace of the
surgery. Note that, by turning W ‘upside down’, one can view W as the trace of a surgery of index
n−k relative to ∂1W using the evident codimension zero Poincaré embedding Dk×Sn−k−1 → ∂1W .

QUESTION 2 Does every elementary Poincaré cobordism W arise as the trace of a Poincaré
surgery?
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The following result gives a partial answer.

THEOREM D Let W n be an elementary Poincaré cobordism of index k. Assume that W is 2-
connected and 3 � k � n−3. Then up to homotopy, W is the trace of a surgery on a suitable
codimension zero Poincaré embedding e : Sk−1×Dn−k ⊂ ∂0W .

REMARK 1.8 This result is originally due to Bill Richter (unpublished), using methods different
from those developed here. In fact, Richter only requires W to be 1-connected.

For applications, it is useful to consider the more general situation in which a cobordism is given
by attaching more than one k-cell.

DEFINITION 1.9 A Poincaré cobordism W is said to be of index k relative to ∂0W if W is obtained
up to homotopy from ∂0W by attaching a finite set of k-cells (sequentially), and similarly, W is also
obtained from ∂1W by attaching a finite set of (n−k)-cells.

THEOREM E Assume that W is 2-connected and 3 � k � n−3. If W is a Poincaré cobordism of
index k, then W is the trace of a finite sequence of surgeries on suitable codimension zero Poincaré
embeddings e : Sk−1×Dn−k ⊂ ∂0W (that is, W is the result of performing a finite collection of
handle attachments to ∂0W , each having index k).

Application 4: Poincaré handlebodies

Let X be a connected Poincaré duality space of dimension n, with ∂ X = ∅. A handle decomposition
for X consists of a filtration

X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

satisfying

• X−1 = ∅;
• each Xi is a Poincaré duality space of dimension n;

• the inclusion Xi ⊂ Xi+1 is such that Xi+1 is obtained from Xi by attaching a finite number of
Poincaré handles of index i+1 to ∂ Xi .

THEOREM F Let X be a 2-connected closed Poincaré space of dimension n. Then X admits a
handle decomposition.

REMARK 1.10 A statement of this kind recalls the early work of Levitt [11]. Handle
decompositions are essentially a kind of ‘patch space’ in the sense of Jones [7]. Handle
decompositions without the connectivity assumption on X are deduced in the book of Hausmann
and Vogel [3] (who use manifold techniques as their main tool). Richter (unpublished) was the first
to deduce handle decompositions via a homotopy theoretic assault. Richter’s technique is different
from mine (his main tool is Ganea theory), and he only requires X to be 1-connected.

Note to the reader. This paper is written for those who already have some familiarity with the first
paper in this series [9].

OUTLINE 1 Section 2 is, for the most part, preliminary material. Aside from giving a rigorous
definition of relative Poincaré embeddings, we also define the stabilization construction. In
Section 3 we show that every map relatively Poincaré embeds upon decompression into large
codimension. Section 4 contains the proof of Theorem A. In Section 5 we prove Theorems D
and E. In Section 6 we prove Theorem F. In Section 7 we prove Theorem C.
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2. Preliminaries

This section is not intended to be complete. See [9] for a more detailed discussion of this material.

Spaces

As in [9], we work in the Quillen model category Top of compactly generated topological spaces
[13]. Recall that the weak equivalences of Top are the weak homotopy equivalences. For the most
part, we work with cofibrant spaces: that is, those spaces which are (retracts of) spaces built up from
the empty space by attaching cells (if the result of a construction destroys cofibrancy, we typically
apply functorial cofibrant replacement). Knowledge of homotopy limits and colimits is assumed on
the part of the reader (see [1]).

A pair (Y, A) satisfies dim(Y, A) � k if there exists a factorization

A→ Z
∼→ Y

such that Z is built up from A by attaching cells of dimension � k (that is, (Y, A) is weak equivalent
rel A to a relative CW complex of relative dimension at most k). As a special case, we write
dim Y � k when A = ∅.

A commutative square of spaces
A −−−−→ C


�



�

B −−−−→ D

is j -coCartesian if the induced map B×0 ∪ A×[0, 1] ∪ C×1→ D is j-connected. Similarly, it is
j -Cartesian if the map from A into the homotopy pullback of B → D← C is j-connected.

Given a map of spaces f : Y → Z , we will sometimes let (Z̄ , Y ) denote the mapping cylinder
pair (Z ∪ f×0 (Y×[0, 1]), Y×1).

Fibrewise spaces

For a map of spaces A→ X , we consider the category

A\Top/X

whose objects are spaces Y equipped with a choice of factorization A → Y → X . A morphism
Y → Y ′ is a map of underlying spaces which is compatible with the structure maps. For example,
when A is the empty space we obtain Top/X , which is the category of spaces over X . It was
proved in [9, 4.4] that A\Top/X is a model category: the weak equivalences are morphisms whose
underlying maps of spaces are weak homotopy equivalences.

Fibrewise suspension is the functor

A\Top/X → (�X A)\Top/X

given by mapping Y to �X Y := X×0 ∪ Y×[0, 1] ∪ Y×1. One of the important tools used to
construct embedded Poincaré thickenings is the fibrewise desuspension theorem [9, 4.7, 4.9] which
gives sufficient criteria for an object to be a fibrewise suspension up to weak equivalence.
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Poincaré duality spaces

We use Wall’s definition [16]: let (X, ∂ X) be a homotopy finite pair such that X is equipped with a
local coefficient system L which is pointwise free abelian of rank one. One says that X is a Poincaré
space of (formal) dimension n if there exists a class [X ] ∈ Hn(X, ∂ X;L) (called a fundamental
class) such that

• the cap product homomorphism

∩[X ] : H∗(X;M)
∼=→ Hn−∗(X, ∂ X;L⊗M)

is an isomorphism in all degrees for all local coefficient systems M on X .

• Moreover, if [∂ X ] ∈ Hn−1(∂ X;L|∂ X ) denotes the image of [X ] with respect to the boundary
homomorphism in the homology long exact sequence of (X, ∂ X), then the cap product
homomorphism

∩[∂ X ] : H∗(∂ X;M)
∼=→ Hn−1−∗(∂ X,L|∂ X ⊗M)

is an isomorphism in all degrees for all local coefficient systems M on ∂ X .

In particular, ∂ X is itself a Poincaré space (with empty boundary).

Codimension zero Poincaré embeddings

If f : Mn → Xn is a map in which M and X are Poincaré duality spaces of dimension n (here M
and X are allowed to have boundaries), then a codimension zero Poincaré embedding of f consists
of an n-dimensional Poincaré space C with boundary ∂ M � ∂ X such that f and C assemble to give
a homotopy decomposition of X :

X � M ∪∂ M C

in such a way that the fundamental class of X is compatible with those of M and C in the above
amalgamation. The space C is called the complement of the embedding. For more details, see [8].

Embedded thickenings

A homotopy finite space K might admit more than than one Poincaré boundary. If (K ′, ∂K ′) is a
Poincaré space with K ′ having the homotopy type of K , and K ′ is codimension zero embedded in
a Poincaré space X , then it is reasonable to think of K ′ as the analogue of a regular neighbourhood
of K in X . This idea gives rise to the notion of embedded Poincaré thickening.

DEFINITION 2.1 Let X be an n-dimensional Poincaré space, let K be a homotopy finite space, and
let f : K → X be a map. An embedded thickening of f consists of

• (Stratification) a commutative coCartesian square of spaces

A −−−−→ C


�



� j

K −−−−→
f

X

and a factorization of the inclusion ∂ X → X as ∂ X → C
j→ X . We also demand that A and C

are homotopy finite. Furthermore, these data are assumed to satisfy



326 J. R. KLEIN

• (Poincaré duality). We require that the image of a fundamental class for X under the composite
Hn(X, ∂ X)→ Hn(X, C) ∼= Hn(K̄ , A) provides (K̄ , A) with the structure of a Poincaré space
(twisted coefficients are implicit here; we remind the reader that K̄ is the mapping cylinder of
A→ K ). Similarly, the image of a fundamental class of [X ] under the composite Hn(X, ∂ X)→
Hn(X, K�∂ X) ∼= Hn(C̄, A�∂ X) provides (C̄, A�∂ X) with the structure of a Poincaré space.

• (Weak transversality). If dim K � k, then A→ K is (n−k−1)-connected.

The space C is the complement, and A is the gluing space of the embedded thickening. If dim K �
k, then we say that the (homotopy) codimension of the embedded thickening is at least n−k. The
weak transversality condition is supposed to mirror the fact that a regular neighbourhood of a k-
dimensional polyhedron in an n-dimensional manifold has this property.

TERMINOLOGY In [9] we used ‘PD embedding’ to refer to embedded thickenings. Beginning in
[8], we decided to change the name to emphasize the difference between embedded thickenings and
codimension zero Poincaré embeddings. In light of these distinctions, note that the ‘embeddings’
referred to in the Introduction are meant to be embedded thickenings.

Relative embedded thickenings

We now relativize the foregoing. Let (K , L) be a cofibration pair such that K and L are homotopy
finite. Let X be an n-dimensional Poincaré space. Fix a map

f = ( fK , fL) : (K , L)→ (X, ∂ X).

DEFINITION 2.2 A embedded thickening of f consists of a commutative diagram of cofibration
pairs of homotopy finite spaces

(AK , AL) −−−−→ (CK , CL)


�



�

(K , L) −−−−→
f

(X, ∂ X)

such that

• (Stratification). Each of the associated diagrams of spaces

AK −−−−→ CK


�



�

K −−−−→
fK

X

and

AL −−−−→ CL


�



�

L −−−−→
fL

∂ X

is coCartesian and the latter of these diagrams is an embedded thickening of L in ∂ X ;

• (Duality). The image of the fundamental class of X with respect to the composite

Hn(X, ∂ X)→ Hn(X̄ , ∂ X ∪CL CK ) ∼= Hn(K̄ , L ∪AL AK )

gives (K̄ , L ∪AL AK ) the structure of an n-dimensional Poincaré space (here, coefficients are
given by pulling back the local system for X ). Similarly, (C̄K , CL ∪AL AK ) has the structure of
a Poincaré space with fundamental class induced from X .
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• (Weak transversality). If dim(K , L) � k, then the map AK → K is (n−k−1)-connected.

If an embedded thickening e of fL is a priori specified, then an embedded thickening of f which
on L coincides with e is said to be an embedded thickening of f relative to e. Another way to
formulate the latter is as follows: notice that e determines a map CL∪AL AK → X , and an embedded
thickening of f relative to e amounts to choosing an object

CK ∈ (CL ∪AL AK )\Top/X

which satisfies the stratification, duality and weak transversality axioms.

Stabilization

Let (X, ∂ X) be an n-dimensional Poincaré space. Let

ξ : S(ξ)→ X

be a spherical fibration with fibre S j−1, and let D(ξ) denote the mapping cylinder of ξ . If Z → X
is a map, then ξ |Z will denote the pullback of ξ to Z .

DEFINITION 2.3 (twisted fibrewise suspension) For a map Z → X , set

�ξ Z = hocolim (Z ← S(ξ |Z)→ S(ξ)) .

As a special case, when ξ is the trivial fibration with fibre S0, we have an identification of �ξ Z with
�X Z , the fibrewise suspension of Z → X .

When Z = ∂ X we define
∂ D(ξ) := �ξ∂ X .

If we identify D(ξ) with hocolim (∂ X
∼← D(ξ |∂ X) → D(ξ)), then (D(ξ), ∂ D(ξ)) is a Poincaré

space of dimension n+ j .
Now, suppose we are given relative embedded thickening of f with associated diagram

(AK , AL) −−−−→ (CK , CL)


�



�

(K , L) −−−−→
f

(X, ∂ X).

Using ξ and its restriction along fK and fL , we may apply the twisted suspension construction to
obtain a commutative diagram

(�ξ |K AK , �ξ |L AL) −−−−→ (�ξ CK , �ξ CL)


�



�

(D(ξ |K ), D(ξ |L)) −−−−→ (D(ξ), ∂ D(ξ))

which defines a relative embedded thickening of (D(ξ |K ), D(ξ |L)) in (D(ξ), ∂ D(ξ)). Using the
evident homotopy equivalence

(K , L)
�→ (D(ξ |K ), D(ξ |L))
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(and taking a suitable mapping cylinder) we obtain a relative embedded thickening of the composite

(K , L)
�→ (D(ξ |K ), D(ξ |L))→ (D(ξ), ∂ D(ξ)) .

A special case of this construction occurs when S(ξ) → X is the trivial fibration with fibre S j−1.
If this is the case, the pair (D(ξ), ∂ D(ξ)) is identified with (X×D j , ∂(X×D j )), and the new
embedded thickening is called the j-fold decompression.

3. Relative embedded thickenings in stable codimension

Assume that f = ( fK , fL) : (K , L) → (X, ∂ X) is such that fL : L → ∂ X is the underlying map
of an embedded thickening e. We want to prove that a suitable iterated decompression of e extends
to a relative embedded thickening of f .

The argument given here has the advantage of being relatively short. However, its
main disadvantage is that it is not manifold-free (transversality and the existence of regular
neighbourhoods are needed). In another paper, we will show how to obtain relative embeddings
using equivariant Spanier–Whitehead duality (with respect to a topological group model for the
loop space of X ).

We begin with a special case.

LEMMA 3.1 Assume dim(K , L) � k. If (X, ∂ X) has the homotopy type of a compact PL manifold
of dimension n � 6, and n � 2k+1, then f embedded thickens relative to e.

Proof. Without loss in generality, we can assume that X is a compact PL manifold. Consider the
restriction fL : L → ∂ X together with its given embedded thickening. The Browder–Casson–
Sullivan–Wall theorem [17, Chapter 11] shows that this embedded thickening can be linearized:
that is, it is concordant to an embedded PL thickening of fL : L → ∂ X (recall that an embedded
PL thickening

§
of fK : K → X in the sense of [15] consists of a PL codimension one splitting

∂ X = V ∪∂V C and a homotopy equivalence h : K
�→ V such that h followed by the inclusion

V ⊂ X is homotopic to f ). Thus, one can assume without loss in generality that L is a compact
codimension zero PL submanifold of ∂ X . The proof is now completed by applying a straightforward
cell-by-cell induction using general position and the existence of regular neighbourhoods to extend
the submanifold L ⊂ ∂ X to a relative embedded PL thickening of f .

Let f : (K , L)→ (X, ∂ X) be a map such that fL comes equipped with an embedded thickening
e. Then for any integer j � 0, e determines an embedded thickening e j of the composite map

L
e→ ∂ X ⊂ ∂(X×D j )

(this uses j-fold decompression and the inclusion (∂ X)×D j ⊂ (X×D j ). We are now in a position
to handle the general case.

THEOREM 3.2 There exists an integer j � 0 such that the composite

(K , L)
f→ (X, ∂ X)

⊂→ (X×D j , ∂(X×D j ))

embedded thickens relative to e j .

§
This is sometimes called an embedding up to homotopy.
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Proof. Let ν : S(ν) → X denote the Spivak normal fibration, and let D(ν) denote its mapping
cylinder. then D(ν) is a Poincaré space with boundary S(ν) ∪S(ν|∂ X ) ∂ X . Moreover, (D(ν), S(ν))

has the homotopy type of a compact manifold.
Consequently, by 3.1 the map

(K , L)
f→ (X, ∂ X) ⊂ (D(ν), ∂ D(ν))

relative embedded thickens. Call this relative embedded thickening e′. The proof is finished by
applying the stabilization construction to e′ (cf. section 2) using the Spivak tangent fibration of X .

DEFINITION 3.3 Stable concordance is the equivalence relation generated by concordance and
decompression. Specifically, suppose one has embedded thickenings e0 and e1 with underlying
maps f0, f1 : K → X , and a homotopy F : K×I → X from f0 to f1. Then e0 and e1 are stably
concordant (with respect to F) if they are concordant after taking a suitable iterated decompression
of e0 and e1.

COROLLARY 3.4 Let f : K → X be a map which embedded thickens. Then there is exactly one
stable concordance class of embedded thickening having f as underlying map (with respect to the
constant homotopy of f ).

4. Proof of Theorem A
The argument is along the same lines as the proof of the main theorem of [9]. For this reason, we
present the proof with less formality. For more details, we refer the reader to [9, section 6].

Assume that fL : L → ∂ X comes equipped with an embedded thickening e, whose diagram is
denoted by

AL −−−−→ CL


�



�

L −−−−→
fL

∂ X .

In what follows, r will denote the connectivity of f : K → X . Assume that r � 2k−n+2 and
k � n−3, where k denotes the relative dimension of (K , L) and n denotes the dimension of (X, ∂ X).
We wish to show that the embedded thickening of fL extends to a relative embedded thickening
of f .

Step 1. By 3.2 and downward induction on codimension, we may assume that the composite

(K , L)
f→ (X, ∂ X)→ (X×I, ∂(X×I ))

is the underlying map of an embedded thickening which restricts to the given one on L . It is
sufficient to show that this relative embedded thickening compresses into (X, ∂ X). The next step is
to construct a candidate for the complement.

Step 2. Let us assume the relative embedded thickening of step 1 is given by

(A′K , A′L) ��

��

(WK , WL)

��

(K , L)
f ′

�� (X×I, ∂(X×I ))
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where the map f ′ is given by f followed by the inclusion (X, ∂ X) ⊂ (X×I, ∂(X×I )). Since the
diagram restricts along L to the diagram of decompression of e, there is a Poincaré space (CL , AL)

and an identification

(WL , A′L) � (�X CL , �L AL) .

PROPOSITION 4.1 With respect to the assumptions of Theorem A, WK fibrewise desuspends over X
relative to WL = �X CL. That is, there exists an object CK ∈ CL\Top/X and a weak equivalence

�X CK � WK

in (�X CL)\Top/X.

Proof. The map WK → X is (n−k)-connected, since it opposes the (n−k)-connected map A′K →
K in a homotopy coCartesian square. Furthermore, the map �X CL → WK has the property that its
(relative) cohomology (with any local coefficients) vanishes above degree n−r . This last assertion
is a consequence of Poincaré duality: recall that ∂WK is identified with �X CL ∪�L AL A′K , so the
relative cohomology of �X CL → WK is Poincaré dual to the relative homology of A′K → WK . The
latter, by excision, coincides with the relative homology of fK . The proof is finished by applying
the fibrewise desuspension theorem [9, Theorem 4.7].

Step 3. Consider the object A′K ∈ A′L\Top/K . Since A′L = �L AL , we have a lifting problem,

�L AL ��

��

A′K

��

�� WK

��

�K AL ��

�′
���

�
�

�
�

�

����������
K �� X .

Note there is a preferred lift � : �K AL → WK making the diagram homotopy commute (since
the Poincaré boundary of WK is identified with �X CL ∪�L AL A′K , the inclusion �X CL → WK

restricted to �K AL gives this lift). We would like to back up � to another lift �′ as indicated by the
diagram.

Note that the right-hand square is (r+n−k−1)-Cartesian by the Blakers–Massey theorem [2].
Since dim(�K AL , �L AL) � k our hypotheses guarantee a solution to the lifting problem. Choose
once and for all a lift

�′ : �K AL → A′K

making the diagram homotopy commute. Replacing A′K by a suitable mapping cylinder if necessary,
we can arrange the lift so that the diagram strictly commutes. Assume that this has been done.
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Step 4. The lift �′ can be displayed with the other data as a commutative 3-cube of spaces

AL

����
��

��
��

��

��

K

��

����
��

��
��

K ��

��

A′K

��

CK ��

����
��

��
��

X̄

����
��

��
��

X̄ �� WK

where X̄ denotes the mapping cylinder of the map CK → X (the lift �′ amounts to the information
contained in the top face of the cube).

Let B be the homotopy inverse limit of the punctured cube given by deleting AL from the above
3-cube. In particular, we have a map

AL → B .

If we replace AL by B in the above cube, the resulting 3-cube is commutative up to preferred
homotopy. As in the discussion prior to [9, Claim 6.3], one can map this 3-cube to a strictly
commuting one by a pointwise weak equivalence. To avoid notational clutter, we assume this has
been done, but keep the present notation for the cube.

The following result is proved in the same way as [9, Claim 6.3].

LEMMA 4.2 The square
B −−−−→ K


�



�

K −−−−→ A′K
is (2(n−k−1)+ r)-coCartesian. Morever, B is a connected space.

Step 5. We now apply the coCartesian replacement theorem [9, Theorem 4.2, Addendum 4.3] to the
square of Lemma 4.2 and the map AL → B.

Since the relative cohomology of the map

�K AL → A′K
(with any local coefficient bundle) vanishes in degrees greater than or equal to n, we are entitled to
apply [9, 4.3] (this is where the inequality r � 2k − n + 2 is used; for more details, see [9, 6.4]).
This results in a space AK and a factorization

AL → AK → B

such that the square
AK −−−−→ K


�



�

K −−−−→ A′K
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(given replacing B with AK ) is coCartesian.
The next lemma is proved in the same way as [9, Claim 6.5]

LEMMA 4.3 The composite map AK → B → CK together with the map AK → K fits into a
coCartesian square

AK −−−−→ CK


�



�

K −−−−→ X.

Finally, notice that what we really have is a coCartesian square of pairs

(AK , AL) −−−−→ (CK , CL)


�



�

(K , L) −−−−→ (X, ∂ X) .

Finally, to see that this diagram is relative embedded thickening, follow the proof of [9, Claim 6.6]
(with appropriate modifications). This completes the proof of Theorem A.

5. Proof of Theorems D and E

Theorem D is a special case of Theorem E. We first prove the former, and thereafter extend the
proof to the latter.

Proof of Theorem D. Given an elementary Poincaré cobordism W n of index k, relative to ∂0W
(where ∂W = ∂0W � ∂1W ), we wish to show that W is the trace of a Poincaré surgery on a
codimension zero Poincaré embedding Sk−1×Dn−k → ∂0W , provided that 3 � k � n−3 and W is
2-connected.

Case (1): 2k < n. By [9, Theorem A] the map Sk−1 → ∂0W admits an embedded thickening.
Fixing this embedded thickening, we wish to extend it to a relative embedded thickening using the
characteristic map (Dk, Sk−1) → (W, ∂W ). One checks that the hypotheses of Theorem A hold
in this case. The resulting relative embedded thickening of the characteristic map describes W as
being obtained from ∂0W by attaching a k-handle. This finishes case (1).

Case (2): 2k � n. Turn W upside down and view it as an elementary cobordism of index n−k
relative to ∂1W .

The associated attaching map Sn−k−1 → ∂1W admits an embedded thickening by [9,
Theorem A]. We may now apply Theorem A to the characteristic map (Dn−k, Sn−k−1) →
(W, ∂1W ) to get a relative embedded thickening. This describes W as the trace of a surgery on
a codimension zero Poincaré embedding Dk×Sn−k−1 → ∂1W . Turning W rightside up, we see
that it is is obtained from ∂0W by attaching a k-handle.

Proof of Theorem E. The cobordism W is obtained from ∂0W by sequentially attaching a finite set
of k-cells.

First assume that 2k < n. Then as in case (1) of the proof of Theorem D, we can represent the
characteristic map (Dk, Sn−k−1) → (W, ∂0W ) of the first cell by a relative embedded thickening.
This allows us to rewrite W = P ∪ Q with P given by attaching a single k-handle to ∂0 P = ∂0 Q
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and Q a cobordism of index k having one cell less (here the union is taken along ∂1 P = ∂0 Q; also
we have deformed the attaching maps of the remaining cells of (W, ∂0W ) so that they are attached
to ∂1 P). Replacing W by Q and proceeding inductively, we obtain the desired decomposition of W .

In the case when 2k � n, use case (2) in the proof of Theorem D and proceed mutatis mudandis.

6. Proof of Theorem F

In this section we prove that 2-connected closed Poincaré spaces admit Poincaré handle
decompositions.

Let Xn be such a Poincaré space. If n � 4 then the fact that X is 2-connected implies by Poincaré
duality that X � Sn . The result clearly holds in this instance. So assume that n � 5. By a theorem
of Wall [16], we may choose a CW decomposition of X of the form X � K ∪β Dn , where K is a
2-connected CW complex of dimension at most n − 3. Moreover, K can be chosen so that it has
one 0-cell and no 1- or 2-cells.

We construct the filtration inductively. Suppose we have constructed a partial filtration

X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xk−1,

where Xi → Xi+1 the underlying map of a Poincaré embedding. Furthermore, the Xi ⊂ X are
compatibly Poincaré embedded and each such map realizes the i-skeleton of X . Let Ck−1 denote
the complement of Xk−1 in X . Then the diagram

∂ Xk−1 −−−−→ Ck−1


�



�

Xk−1 −−−−→ X

is a homotopy pushout. Moreover, the relative Hurewicz theorem and excision gives an isomorphism

πk(X, Xk−1) ∼= πk(Ck−1, ∂ Xk−1) .

Using this isomorphism, we see that the characteristic map (Dk, Sk−1)→ (Xk−1, X) for each k-cell
factors through (Ck−1, ∂ Xk−1).

The set of k-cells of X therefore define a map

α : (∂ Xk−1 ∪ (�
r

Dk), ∂ Xk−1)→ (Ck−1, ∂ Xk−1) .

By Theorem A one can find a relative embedded thickening of α. We therefore have (1) a Poincaré
cobordism V with ∂0V = ∂ Xk−1, (2) a Poincaré embedding rel ∂ Xk−1 of V in Ck−1 and (3) a
homotopy equivalence

V � ∂ Xk−1 ∪ (�
r

Dk) rel ∂ Xk−1 .

We infer that V is a Poincaré cobordism of index k with respect to ∂ Xk−1. By Theorem E, V is
the trace of a sequence of surgeries on a finite collection of Poincaré embeddings Sk−1×Dn−k ⊂ V
(here we are using that 3 � k � n−3 and that V is 2-connected). Set Xk := Xk−1 ∪ V . Then
Xk → X is a Poincaré embedding representing the k-skeleton of X .

Repeating the above procedure sufficiently many times, we obtain a Poincaré embedding
Xn−3 → X with Xn−3 � K . It is automatic that X is obtained from Xn−3 by attaching a single
n-cell. This completes the proof.
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7. Proof of Theorem C

Assume that (Xn, ∂ Xn) is (2k−n+2)-connected, X is 2-connected and k � n−3. Given
f : (Dk, Sk−1) → (X, ∂ X), we wish to show that it is the underlying map of a relative embedded
thickening.

If k � 2, we first represent fSk−1 : Sk−1 → ∂ X by an embedded thickening (using, say, the main
theorem of [9]). Then we can apply Theorem A to extend this to a relative embedded thickening of
f . So for the remainder of the proof, assume that k � 3.

When k � 3, the argument is given in two steps. First apply Theorem A to the associated map

g : (∂ X ∪ f Dk, ∂ X)→ (X, ∂ X) .

This gives a Poincaré duality space thickening W n of ∂ X ∪ f Dk with W codimension zero Poincaré
embedded in X such that

∂W = ∂ X � ∂1W .

Moreover, W is an elementary cobordism of index k relative to ∂ X .
The next and last step is to apply Theorem D to W . This shows that W is obtained from ∂ X by

attaching a Poincaré k-handle. Since W is Poincaré embedded in X relative to ∂ X , we are done.
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306–343.
8. J. R. Klein, Embedding, compression and fiberwise homotopy theory, Algebr. Geom. Topol. 2

(1998), 311–336.
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