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1. INTRODUCTION

The choice of a closed regular neighborhood of a finite polyhedron embedded in a manifold
enables one to write the ambient space as a union of two manifolds, the neighbor-
hood and its complement, glued along a common boundary component. Poincaré
duality embeddings are a homotopy theoretic version of this in which the manifolds are
replaced by Poincaré spaces and the gluing is now done with respect to a homotopy
equivalence.

To put it another way, a map f : KPX from a finite complex K into an n-dimensional
Poincaré duality space X (or Poincaré pair (X, LX)) is said to Poincare& embed if f extends to
a homotopy equivalence

KX
A

CKX

such that each piece of the decomposition satisfies Poincaré duality. This means that (K,A)
and (C,A) (or (C, LX¬A) when X has a boundary) are Poincaré pairs having the same
dimension. Moreover, the fundamental class in each case is induced from the fundamental
class of X (for the precise definition, see 2.2 below). Thus to specify the Poincaré embedding,
we have to find the complement C and the way which it is glued to K to give X.

There are obstructions to Poincaré embedding. For example, for such a decomposition
of X to exist it is necessary that the homology of K (with respect to any coefficient system)
vanishes in degrees 'n. Let us write hodimK)k if K is homotopy equivalent to a CW
complex of dimension )k. We will be working with the codimension *3 hypothesis:
k)n!3.

Question. Given a map f : KPX, when does it Poincaré embed?

The problem may be broken up into two stages: first construct a candidate for the
complement of K, then, provided that the candidate has been correctly chosen, find the
gluing data to build X. In this paper we give a partial answer to the above question in terms
of a lower bound for the connectivity of f.
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THEOREM A. ¸et f : KPX be r-connected. ¹hen f Poincaré embeds provided k)n!3
and

r*2k!n#2 .

This is the Poincaré analogue of a theorem of Wall which gives criteria for a finite
complex to embed up to homotopy in a smooth manifold [17]. Actually, Wall’s result is one
dimension sharper than our Theorem A, and I do not know whether the bound in the
Poincaré case can be improved to get the extra dimension. When r"0, Theorem A is
a result of Levitt [10]. When r"1, X is 1-connected and K is a Poincaré space, it is a result
of Hodgson [6]. The proofs of the theorems of Wall, Levitt and Hodgson are based on
engulfing and the Whitney trick.

In contrast, our approach will be homotopy theoretic. The technology developed here
should be of interest to both homotopy theorists and manifold topologists. For homotopy
theorists, we introduce new tools for studying cubical diagrams of spaces. Unbased
fiberwise homotopy theory over a fixed space is discussed and a Freudenthal-type desus-
pension theorem is proved (which is different from the corresponding based version that is
to be found in the work of James [7, Section 9]; see 4.10 below). This fiberwise desuspension
result enables us to construct the complement.

For manifold theorists, we point out that Theorem A has applications to embedding
theory in codimension *3 via the surgery machine (see e.g. Corollary A below).

We also mention that fiberwise technology is powerful enough so as to classify embed-
dings in a range which is about twice as large as the one appearing here (the classification is
in terms of homotopy theoretic data which are sometimes computable). There is also
a companion result to Theorem A which says that the embedding is unique ‘up to isotopy’
when the bound on connectivity is replaced by strict inequality. The uniqueness result is
a special case of a relative version of Theorem A which applies to maps of pairs
(K,¸)P(X, LX) whose source is a relative CW pair and whose target is a Poincaré pair,
where it is already assumed that a Poincaré embedding has been specified for the restriction
¸PLX. The issue of uniqueness, the relative case and classification will be addressed in
another paper.

By combining Theorem A with the Browder—Casson—Sullivan—Wall theorem [20, 11.3.2]
(and some benign manipulations with Whitehead torsion which we omit) we obtain the
following, originally due to Haefliger [5]:

COROLLARY A. An r-connected map f :»kPNn of smooth manifolds (with » closed) is
homotopic to a smooth embedding provided that 3(k#1))2n, n*6 and r*2k!n#2.

Applying Theorem A to the diagonal map XPX]X of a closed Poincaré duality
space, we settle in the affirmative an old conjecture in the 2-connected case, which concerns
the existence of the unstable homotopy tangent bundle for Poincaré spaces:

COROLLARY B. If X is 2-connected, then the diagonal XPX]X Poincaré embeds.

To provide some further context for Theorem A, we now make a few remarks about
Poincaré surgery (however, we do not pursue the issue of Poincaré surgery in this article).
Suppose that one is given a normal map g:»nPXn of Poincaré spaces, i.e., a degree one
map which is covered by a map of Spivak normal fibrations. A basic problem of this subject
is to decide when the map is cobordant through normal maps to a homotopy equivalence.
A reasonable way to go about this would be to do surgery on framed Poincaré embedded
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spheres in » to improve the connectivity of g. If say, X is 1-connected and n*5, then
Theorem A allows one to perform a sequence of surgeries on framed Poincaré embedded
spheres to obtain an [n/2]-connected normal map. Thus Theorem A has application to
surgery below the middle dimension.

Here is the scheme of the proof of Theorem A. Consider f :KPX followed by the
inclusion XLX]Dj. For large j we show that the composite map Poincaré embeds. The
next step is to compress this Poincaré embedding down into X. By a downward induction
on codimension, it suffices to consider the case j"1. Let ¼ denote the Poincaré comp-
lement to K in X]I. The first obstruction to compressing down into X is given by the
existence of a map CPX and a fiberwise weak equivalence &

X
CK¼, i.e., the complement

¼ needs to fiberwise desuspend over X. It turns out that our bound for the connectivity is
sufficient to guarantee that such a fiberwise desuspension exists. The space C will be our
candidate for the complement of K in X. Let A@ be the space along which K and ¼ are
glued to make X]I. The final step of the proof is to show that A@ fiberwise desuspends over
K in a way compatible with the fiberwise desuspension we chose for ¼ (the resulting
desuspension will be our candidate for gluing K to C to build X). Identify A@ with &

K
A for

some map APK, and identify ¼ with &
X
C. We show there exists a map APC such that

the resulting composite &
K
AP&

X
AP&

X
C coincides with the given map A@P¼ via the

identifications. Then the resulting data amount to a Poincaré embedding of f : KPX.

Outline. This article is organized as follows: Section 2 sets forth the basic definitions and
conventions; most of the material here is well known. In Section 3 we establish the existence
of Poincaré embeddings in the stable case: we show that a map f: KPX followed by the
inclusion XLX]Dj will Poincaré embed when j is sufficiently large. In Section 4 we prove
the Truncation Lemma 4.1, which is the main technical tool for deducing the Cocartesian
Replacement Theorem 4.2 and the Desuspension Theorem 4.7. In Section 5 we prove the
Face Theorem 5.1, which is an excision statement about cubical diagrams of spaces. In
Section 6 we prove Theorem A.

2. PRELIMINARIES

We will be using the Quillen model category structure on the category Top of compactly
generated topological spaces [11]. In this model category, the weak equivalences are the
weak homotopy equivalences, the fibrations are the Serre fibrations and the cofibrations are
the ‘‘Serre cofibrations’’, i.e., inclusion maps given by a sequence of cell attachments (i.e.
relative cellular inclusions.) or retracts thereof. In particular every object is fibrant and the
cofibrant objects are retracts of cellular objects. Fibrations are specified as ‘‘{’’, cofibra-

tions as ‘‘Å’’ and weak equivalences as ‘‘ FP’’.

Each morphism of Top can be functorially factored in two ways as: (1) a cofibration
followed by a fibration which is also a weak equivalence, or as (2) a cofibration which is
a weak equivalence followed by a fibration. Applying the first of these options to the map

0P½, we obtain for each object a cofibrant replacement ½# F{½.

We will be working for the most part with cofibrant objects. Unless otherwise specified,
throughout this paper the term ‘‘space’’ will mean a cofibrant object. A space is called
homotopy finite if it is homotopy equivalent to a finite complex. A map APB of spaces (with
B nonempty) is r-connected if for any choice of basepoint in B, the homotopy fiber with
respect to this choice of basepoint is an (r!1)-connected space (by convention, a non-empty
space is at least (!1)-connected). In particular, any map APB is (!1)-connected. A weak
equivalence is an R-connected map.
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If no confusion arises, the following slightly ambiguous notation will often be used: if
f :APB is a map, we let the pair denoted (BM , A) consist of the mapping cylinder
BM "BX

f
A][0 ,1] together with the inclusion of A]0.

The machinery of homotopy limits and colimits will be used throughout (cf. [2]). We
also assume that the reader is familiar with homotopy excision, i.e., the Blakers—Massey
theorem and its (dual) generalization to cubical diagrams of spaces. A basic reference for the
latter is [4, Section 2].

Lastly, a warning about terminology: suppose we are given a commutative square of
spaces

such that the induced map B]0XA][0,1]XC]1PD is a homotopy equivalence. One
usually says in this instance that the square is homotopy cocartesian (or a homotopy
pushout). However, we will instead follow Goodwillie’s conventions and say that the square
is cocartesian. Similarly, the square is j-cocartesian if the map is j-connected (thus R-
cocartesian is the same thing as cocartesian). Analogous terminology will be used in the
cartesian case. We also use this terminology for cubical diagrams of spaces.

2.1. Poincaré duality spaces

Let X be a homotopy finite space equipped with a local coefficient system L (i.e.,
a functor from the fundamental groupoid of X to the category of abelian groups) which is
pointwise free abelian of rank one. Let [X]3H

n
(X;L) be a class. The data (X,L, [X])

equip X with the structure of a Poincare& duality space of dimension n if cap product induces
an isomorphism

W[X] :H*(X;M) °PH
n~*(X,L?M)

for every local system M. When L and [X] are understood, we will simply refer to X as
a PD space.

If n
x

denotes the fundamental group at x3X, then the local system which assigns to
x the integral group ring Z[n

x
] is denoted by ". It is a fact that W[X] defines an

isomorphism for all local systems M if and only if it does for " (cf. [19, 1.1]).
A cofibration pair (X, LX) consisting of homotopy finite spaces together with L and

a class [X]3H
n
(X, LX;L) will be called a Poincare& pair of dimension n if, similarly, cap

product induces an isomorphism

W[X]:H*(X;M) °PH
n~*(X, LX;L?M)

for all M and moreover, the restriction ofL to LX together with the image of [X] under the
boundary homomorphism H

n
(X, LX;L)PH

n~1
(LX;L) equips LX with the structure of

a PD space. Again, it is enough to check these conditions in the case when M is ". We will
refer to Poincaré pairs as PD pairs.

There is often redundancy (compare [3, 2.2.3]).

LEMMA 2.1 If (X, LX) is 2-connected and W[X] is an isomorphism, then (X, LX) is a PD
pair.
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Proof. I learned of the following argument from A. Ranicki: let [LX] denote the image
of [X] with respect to the boundary homomorphism. Since n

1
(X)+n

1
(LX), it will be

enough to check that

W[LX]:H*(LX;")PH
n~*~1

(LX;L?")

is an isomorphism.
Consider the commutative diagram

whose horizontal maps induce long exact sequences in homology. The middle and right
vertical maps are given by chain level versions of W[X] and W[LX] respectively. The left
vertical arrow is also given by a cap product with [X]. By hypothesis, the middle vertical
map induces a homology isomorphism. Therefore, by the five lemma, it is sufficient to show
that the left vertical map induces a homology isomorphism.

The left vertical map can also be obtained as follows: by hypothesis, we have a chain
homotopy equivalence

W[X]:Cn~*(X;L?")P̄C* (X, LX;") .

For a left (right) "-module P, let Pj"hom"(P,") denote its dual right (left) module given
by taking module homomorphisms into ". Dualize the map W[X] to get another chain
homotopy equivalence, (W[X])j.

Since C*(X, LX;") is (up to homotopy) a chain complex of finitely generated free
modules, C*(X, LX;")j is identified with C*(X, LX;") (because a finitely generated free
module is canonically isomorphic to its double dual). Similarly, Cn~*(X;L?")j is identi-
fied with C

n~*(X;L?"). With respect to these identifications, the map (W[X])j is the left
vertical map of the diagram (this follows from the way cap products are constructed).
Consequently, the left vertical map of the diagram is a chain homotopy equivalence. h

2.2. Poincaré duality embeddings

Definition 2.2. Let f : KPX denote a map from a connected homotopy finite space K to
a PD space X or PD pair (X, LX) of dimension n. A PD embedding for f is a commutative
square of spaces

and a choice of factorization of LXLX as LXPC jPX, such that:

f The square is cocartesian.
f The spaces A and C are homotopy finite.
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f The image of the fundamental class [X] under the composite

H
n
(X, LX)+H

n
(XM , LX)PH

n
(XM ,C)+H

n
(KM ,A)

equips (KM , A) with the structure of a PD pair (here we are suppressing the local
systems in the notation). Similarly, the image of [X] with respect to the evident map
H

n
(X, LX)PH

n
(CM , LX ¬ A) equips (CM , LX¬ A) with the structure of a Poincaré pair.

f If hodim K)k, then APK is (n!k!1)-connected.

The space C is called the complement, and A is called the gluing space. If there exists a PD
embedding for f, then we say that f PD embeds. If hodim K)k, then we say that the
codimension of the embedding is *n!k.

Again, there is often some redundancy:

LEMMA 2.3. If hodim K)n!3, and all of the conditions of the definition are known to
hold except perhaps duality for the pair (CM , LX¬A), then the diagram is a PD embedding.

Proof. This is essentially proved in [20, 2.7ii,11.1], but with a missing hypothesis. We
need to establish that (CM , LX ¬ A) is a Poincaré pair. For this, it will be enough to check
that

W[C]:H*(C)PH
n~*(CM , LX ¬ A)

is an isomorphism, where [C]3H
n
(CM , LX ¬ A) is obtained from [X] as indicated in the

definition. By the cohomology exact sequence

2PH*(CM , LX ¬ A)PH*(CM ,A)PH*(LX)P2

and the naturality of cap product, it suffices to show that

W[C]:H*(CM ,A)PH
n~*(CM , LX)

is an isomorphism (since LX is a PD space).
The exact sequence

2PH*(CM ,A)PH*(X)PH*(K)P2

associated with the cocartesian square, the naturality of cap product, and the fact that
(X, LX) and (KM ,A) are PD pairs implies that W[C] is an isomorphism. h

Remarks 2.4 (1). Assume that K is a PD space of dimension k with k)n!3. Then the
map APK has an (n!k!1)-spherical homotopy fiber over any point (by [15, 4.4], [3,
I.4.3]). In this situation APK plays the role of normal bundle for K in X. This particular
kind of PD embedding is discussed in [20, Chap. 11].

(2). PD embeddings arise from manifold embeddings in the following way. Suppose that
» is a closed regular neighborhood of a k-dimensional finite connected polyhedron
embedded in the interior of a compact n-manifold N. Let C be the closure of NC», and let
A be the boundary of ». Then N"»X

A
C, and the data determine a PD embedding of

» in N.
(3). If k is an integer such that hodim K)k)n!3, then to check that APK is

(n!k!1)-connected, it is sufficient to know that it is 2-connected, once we know that (KM ,A)
satisfies n-dimensional Poincaré duality. The reason this is true is that duality implies the
homology of (KM ,A) (with respect to any coefficient system) will vanish in degrees
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)n!k!1. The relative Hurewicz theorem [21, 7.2] then shows that the relative homotopy
groups will also vanish in this range when APK is 2-connected.

In any case, the assumption that APK is (n!k!1)-connected arises from geometry: if
the PD embedding arises from a manifold embedding as in (2) above, then this connectivity
is a consequence of transversality.

The next lemma concerns the extent to which the notion of PD embedding is homotopy
invariant.

LEMMA 2.5. Suppose that f : KPX PD embeds. ¹hen

(1). If g is homotopic to f, then g PD embeds.

(2). ¸et o :¸ FPK be a homotopy equivalence. ¹hen f °o :¸PX PD embeds.

(3). ¸et h : (X, LX) FP(½, L½) be a homotopy equivalence. ¹hen h ° f : KP½ PD embeds.

Proof. Let

be a PD embedding.
(1). Replace f by g and C by the mapping cylinder CM of A¬ LXPC. A choice of

homotopy from f to g induces a map CM PX which defines the desired PD embedding for g.
(2). Let o~1 : KP¸ be a choice of homotopy inverse for o. Then the diagram

is homotopy commutative. As in the first part, replace C by a suitable mapping cylinder to
get the desired PD embedding of f °o.

(3). By taking an appropriate mapping cylinder, we can assume that the map
A ¬ LXPC is a cofibration. Let C@ denote the space

(A¬ L½) X
A¬©X

C .

Then there is an evident PD embedding

2.3. Stabilization

Let S(m)PX denote a ( j!1)-spherical fibration with S(m) not necessarily cofibrant. Even
if S(m) were cofibrant, the restriction S(mDZ) of S(m) along a cofibration ZÅX need not
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be. For this reason, we introduce the following technical innovation: let E:TopPTop be the
functor which maps a space to the geometric realization of its total singular complex. Then
E is pointwise equivalent to the identity. Furthermore, E applied to a monomorphism gives
a cofibration. If F : JPTop denotes a finite diagram, let hocolimEF denote the effect of first
applying E pointwise and then taking the resulting homotopy colimit.

With respect to this convention, let LD(m) be defined as the hocolimE of the diagram

LXQS(mDLX)PS(m) .

Similarly, Let D(m) be defined as hocolimE of the diagram

XQS(m) /PS(m)

(equivalently, the mapping cylinder of the map E(S(m))PE(X)).
Then (D(m),LD(m)) is a PD pair of dimension n#j (the orientation and fundamental class

are induced from the ones on (X, LX) via the Thom isomorphism). This construction is the
Poincaré analogue of replacing an n-manifold with boundary by the total space of a j-disk
bundle which lies over it.

Given a PD embedding

we shall construct another PD embedding whose target is D(m). Let &mC be the space

hocolimE(CQS(mDC)PS(m))

and similarly, let &m@KA be the space

hocolimE(AQS(mDA)PS(mDK)) .

Then these assemble to a PD embedding

where D(mDK) means hocolimE of the diagram KQS(mDK)PS(mDK). In particular, K and
D(mDK) are canonically homotopy equivalent, so by Lemma 2.5(2), we obtain a PD embed-
ding

A special case of this construction occurs when S(m)PX is the trivial fibration with fiber
S0. If this is the case, the pair (D(m),LD(m)) identifies with (X]I, L(X]I)), and the new PD
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embedding is called the decompression. It increases the codimension by one, and is the
Poincaré analogue of the standard way of passing from an embedding in a manifold to one
in the product of the manifold with the unit interval.

In this instance, &mC is a variant of the fiberwise suspension of CPX. This fiberwise
suspension, denoted &

X
C, is given by the double mapping cylinder

X]0XC][0, 1]XX]1 .

the map L(X]I)PX]I factors canonically through &
X
C. Note that L(X]I) is just &

X
LX.

With respect to this variant of the construction, the PD embedding becomes

Notes 2.6. The basic reference for much of the material in this section is Wall’s
foundational paper [19]. For a recent survey about Poincaré duality spaces, see [9]. The
definition of PD embedding given here is very similar to the one proposed by Levitt
[10, 2.3].

3. EXISTENCE OF STABLE PD EMBEDDINGS

Given a PD pair (X, LX) of dimension n, the cartesian product with a disk Dj yields
a PD pair (X]Dj, L(X]Dj)) of dimension n#j, where L(X]Dj) is the amalgamated union
X]Sj~1X(LX)]Dj.

Given a map f :KPX, we let f also denote the composition

K fPXLX]Dj

where the second of these maps is given by identifying X with X]0 by means of the identity.

LEMMA 3.1. ¹here exists a positive integer j such that f : KPX]Dj PD embeds.

Proof. Suppose first that (X, LX) has the homotopy type of a PL manifold with
boundary. If this holds, we may further assume that (X, LX) is actually a PL manifold, by
2.5(3). Take the cartesian product with a suitably large disk Dj, and use general position to
replace f : KPX]Dj by an embedding up to homotopy (see e.g. [17]). Thus there is
a codimension zero compact submanifold N in the interior of X]Dj and a homotopy
equivalence KKN such that the composite KKNLX]Dj coincides with f up to
homotopy. Applying 2.5(1), obtain the desired PD embedding.

Now assume that (X, LX) is general. By regular neighborhood theory [14, Chap. 3], for
some t<n there exists a compact PL manifold Nn`tLRn`t equipped with a decomposi-
tion of its boundary LN"L

~
NX

©0N
L
`

N, and a homotopy equivalence of pairs (X, LX)K
(N, L

~
N). Then the homotopy fiber of the map L

`
NPN is an (n#t!1)-sphere (see [15,

4.4], [3, I.4.1]).
By the previous case, we can assume that the composite

KPX FPN

PD embeds.
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Choose a fiber homotopy inverse S(m)PN for L
`

NPN in the reduced Grothendieck
group of spherical fibrations over N. Suppose that the fiber of S(m)PN is Sl~1.

Stabilizing with respect to S(m)PX, we obtain a PD embedding

It is straightforward to check that there is a homotopy equivalence of pairs

(D(m), LD(m))K(X]Dt`l, L(X]Dt`l))

in such a way that the map KPD(m) corresponds to f up to homotopy. Applying 2.5(1)
completes the proof. h

Notes 3.2. This is the only argument of the paper which uses manifolds. However,
there is an alternative proof which is entirely homotopy theoretic. The alternative argument
requires the technology of fiberwise/equivariant duality. For reasons of space we relegate
this to another paper.

We have implicitly used the Spivak normal fibration of (X, LX) in the proof of Lemma 3.1.
For a homotopy theoretic proof of the existence of the Spivak fibration, see [8], [9].

4. TRUNCATION, COCARTESIAN REPLACEMENT, AND FIBERWISE DESUSPENSION

4.1. The truncation lemma

Let n be a group. Let P be a based connected space with fundamental group n. Let
ºPP be a map of spaces. Let K* be a chain complex of projective Z[n]-modules. Lastly, let
C*(P, º)PK* be a Z[n]-linear chain map, where C*(P,º) is the free chain complex of
Z[n]-modules which computes the relative homology of ºPP.

Assume that dimK*)n in the sense that its cohomology (for any coefficient module)
vanishes in degrees 'n. Assume that the chain map C*(P,º)PK* is n-connected.

LEMMA 4.1 (Truncation). If n*2 there exists a factorization

ºPAPP

such that

f C*(A,º)PK* is a chain homotopy equivalence.
f ºPA is a relative C¼ complex of dim)n.
f APP is (n!1)-connected.

Proof. For this proof, chain complexes and homology are understood to be taken with
respect to the coefficient module Z[n].

Factor ºPP as ºÅ¼PP where (¼,º) is a relative CW complex of dimension
)n!1 and the map ¼PP is (n!1)-connected. The chain map C*(¼,º)PK* is
(n!1)-connected. The cohomology of its mapping cone with respect to any coefficient
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module vanishes in degrees 'n, (since dimK*)n and dimC*(¼,º))n!1). The homo-
logy of the mapping cone vanishes in degrees (n. Therefore, by an observation of Wall,
homology of the mapping cone in degree n is a projective Z[n]-module (see [28, 2.3] or the
proof of [16, 2.1]). Call it Q.

Case (1): Q is free. Choose a basis for Q. The long exact sequence gives a surjection
H

n
(PM ,¼)PQ. The relative Hurewicz theorem gives a surjection n

n
(PM ,¼)PH

n
(PM ,¼).

Choose a lift for each basis element of Q and attach n-cells to ¼ corresponding to these lifts.
Call the resulting space A. Then A gives the desired factorization.

Case (2): Q is arbitrary. At the cost of adding cells we can make Q free as follows: let Q@
be such that Q =Q@ is free. Let F be the free module Q@= Q= Q@=2. Then Q =F+F, by
the Eilenberg Swindle. Attach (n!1)-cells to ¼ in a trivial way indexed by a basis for F. Let
¼@ be the result of this procedure. Extend ¼PP to ¼@ by mapping the new cells to the
basepoint of P. The relative of homology of ¼@PP is again concentrated in degree in n and
it is isomorphic to Q =F. Case (1) now applies. h

We next give some applications.

4.2. Cocartesian replacement

Let

be a commutative square of connected based spaces. We shall provide criteria for deciding
when it is possible to replace X0 by another space such that the new square is cocartesian.

Let n"n
1
(X

12
). Assume that

(1). The square is j-cocartesian for some j*3.
(2). The homomorphism n

1
(X0)Pn is an isomorphism.

(3). The relative cohomology (with any Z[n]-module coefficients) of the map
X

1
sX

2
PX

12
vanishes in degrees 'j.

THEOREM 4.2. ºnder the above assumptions, there exists a based space A and a based map
APX0 such that the resulting diagram

is cocartesian. Furthermore, the map APX0 can be chosen as ( j!2)-connected.

Proof. Let K* denote the Z[n]-module chain complex given by

holim(C*(X1
)PC*(X12

)QC*(X2
))
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(equivalently, the desuspension of the mapping cone of C*(X1
)= C*(X2

)PC*(X12
)). Then

the map

C*(X0)PK*

is ( j!1)-connected. Furthermore, the cohomology of K* with respect to any coefficient
system vanishes in degrees 'j!1. Applying the Truncation Lemma 4.1 (with º"0), we
obtain a map APX0 with the desired properties. (To check that the resulting square is
cocartesian, use the Whitehead theorem in conjunction with the fact that the map
hocolim(X

1
QAPX

2
)PX

12
induces an isomorphism of fundamental groups and an

isomorphism in cohomology with respect to any coefficient module.) h

We also have a relative version:

ADDENDUM 4.3. ¼ith a square satisfying conditions (1) and (2) above (cf. before ¹heorem
4.2), let ZPX0 be a map of spaces (where Z is not necessarily based). Suppose instead of (3)
that the map

hocolim(X
1
QZPX

2
)PX

12

has vanishing relative cohomology in degrees 'j (with respect to any Z[n]-module coeffi-
cients).

¹hen there exists a space A and a factorization ZPAPX0 such that the square given by
replacing X0 with A is cocartesian. Furthermore APX0 can be chosen as ( j!2)-connected.

Clearly, this specializes to Theorem 4.2 by taking Z to be a point.

Proof. Let K* be the chain complex given by taking the mapping cone of the map

C*(Z)Pholim(C*(X1
)PC*(X12

)QC*(X2
)) .

Apply Lemma 4.1 to the evident map

C*(XM 0, Z)PK* .

This gives a factorization ZPAPX0 such that the composite

C*(AM ,Z)PC*(XM 0,Z)PK*

is a chain equivalence. For this choice of A, the new square is cocartesian.

4.3. Fiberwise desuspension

Let f :APX be a map of spaces. Let Top
f

be the category in which an object is specified
by a factorization AP½PX. A morphism is a map ½PZ which preserves factorizations.
A morphism is a weak equivalence, fibration or cofibration if it respectively is so when
considered in Top by means of the forgetful functor Top

f
PTop.

LEMMA 4.4. ¼ith respect to the above conventions, Top
f

is a model category.

Proof. For any model category C, Quillen [11, II.2.8] shows that the over category
C

@X
and the opposite category C01 are also model categories. The weak equivalences and

fibrations of C
@X

are defined via the forgetful functor C
@X
PC. The weak equivalences and

the cofibrations of C01 correspond to the weak equivalences and fibrations of C.
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The map f :APX defines an object of Top
@X

. Denote it by [ f ]. Then Top
f
is isomorphic

to

((Top
@X

)01
@*f+01

)01

and the result follows by remarks in the previous paragraph. h

Remark 4.5. An object ½3Top
f

is fibrant when the structure map ½PX is a Serre
fibration. It is cofibrant when the structure map AP½ is a Serre cofibration.

We will assume in what follows that X is a connected space. Using the above conven-
tions, we shall regard fiberwise suspension as a functor

&
X
: Top

@X
PTop+ ,

where + :X ¬XPX is the fold map. It is straightforward to check that &
X

maps cofibrant
objects to cofibrant objects.

Definition 4.6. An object ½3Top+ is j-connected if the structure map ½PX is a ( j#1)-
connected map of topological spaces. We will say that ½ has dimension)n if the structure
map X¬XP½ has the property that its relative cohomology (with respect to the pullback
of any local system on X along ½PX) vanishes in degrees 'n.

THEOREM 4.7 (Desuspension). ¸et ½3Top+ be a fibrant and cofibrant object which is
j-connected and has dimension )2j#1, for some integer j*1. ¹hen there exists an object
A3Top

@X
and a weak equivalence

&
X
A FP½ .

Moreover, the map APX can be chosen as j-connected.

Proof. Let i
B

: XP½ be the maps obtained by restricting the structure map X¬XP½

to each summand. Let X
~

be the effect of factorizing the map i
~

as XFÅX
~

{½ and let

X
`

be defined similarly using i
`
. We have a cartesian square

where B :"X
~

]
Y
X

`
denotes the fiber product of i

~
and i

`
. Each map in this square is at

least 2-connected. Furthermore, the square is (2j#1)-cocartesian by the dual Blakers—
Massey excision theorem [4, p. 309].

The map X
~

¬X
`
P½ has vanishing relative cohomology in degrees '2j#1, so we

may apply Theorem 4.2 to conclude that there exists a (2j!1)-connected map of spaces
APB such that the square

is cocartesian. Make A an object of Top
@X

by means of the composite AP½PX.

POINCARË DUALITY EMBEDDINGS 609



There is an evident chain of weak equivalences of Top+ given by

&
X
A"X]0XA][0, 1]XX]1 FQX

~
]0XA][0, 1]XX

`
]1 FP½ .

The proof is completed using a well-known general fact about model categories: an
isomorphism in the homotopy category from a cofibrant object to a fibrant object always
lifts to a weak equivalence. h

Remarks 4.8. Theorem 4.7 (and its relative version 4.9 below) will be used to construct
the complement for the Poincaré embedding in the proof of Theorem A. Richter has pointed
out that one can get by with slightly less. Namely, the above cocartesian square involving A,
X

~
, X

`
and ½ can be inserted into the proof of Theorem A instead of the choice of fiberwise

desuspension. This replacement would be one way of removing the fiberwise homotopy
theory in this paper, but for aesthetic reasons we refrain from doing so.

Here is the relative version of Theorem 4.7.

ADDENDUM 4.9. ¸et &
X
Z Å½ be a cofibration of Top+ for some cofibrant object

Z3Top
@X

. Assume that

f the relative cohomology of the underlying map vanishes in degrees '2j#1 for j*1
( for all coefficient systems).

f ¹he object ½ is j-connected.

¹hen there exists a cofibrant object A3Top
@X

, a morphism ZPA, and a weak equivalence

&
X
A FP½

which is relative to &
X
Z. Moreover, the map APX can be chosen as j-connected.

Proof. Follow the proof of Theorem 4.7, but work relative to Z and use Adden-
dum 4.3. h

Notes 4.10. Special cases of the Truncation Lemma 4.1 are to be found in the literature.
The first result in this direction that I know of is in a paper by Berstein and Hilton [1,
Theorem 2.1], who in effect prove a version of Lemma 4.1 when n is trivial. Richter [12] had
a version of Theorem 4.2 when X is simply connected.

The Desuspension Theorem 4.7 reduces to the usual Freudenthal suspension theorem
when X is a point. On the other hand, Theorem 4.7 is not the kind of fiberwise desuspension
result that has appeared in the fiberwise topology literature. The latter falls under the rubric
of based fiberwise homotopy theory, and concerns the extent to which the reduced suspen-
sion functor

&
X
:Top

*$X
PTop

*$X

is surjective on the level of homotopy categories.
Incidentally, our relative version Addendum 4.9 contains both the based and unbased

variants as extreme cases, where we desuspend relative to either the initial or terminal object
of Top

@X
. Taking Z to be the empty space, we obtain Theorem 4.7. When Z"X, we obtain

the based result.
Although there are two different forgetful functors Top+PTop

*$X
, the based and un-

based suspensions are generally very different. For example, take X"S1. Consider the
non-trivial bundle RPS1 with fiber S1, where R is the Klein bottle. Then R"R

S1S1, where
we fiberwise suspend the multiplication by 2 map S1PS1. But the multiplication by 2 map
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does not admit a section. This example shows that there are objects of Top+ which fiberwise
desuspend in the unbased sense but which fail to do so in the based sense.

5. THE FACE THEOREM

We now prove a technical result which concerns the degree to which the faces in
a cartesian 3-cube are cocartesian. The result will be crucial in the proof of Theorem A.

Let

be a commutative 3-cube of spaces.

THEOREM 5.1. Suppose that the 3-cube is cartesian and that

f the spaces X
S

are connected for each non-empty SLM1, 2, 3N;
f each two dimensional face which meets X

123
is cocartesian;

f the maps X
j
PX

ij
are k

i
-connected and the maps X

i
PX

ij
are k

j
-connected, for

1)i(j)3.

¹hen each of the squares

is (k
1
#k

2
#k

3
)-cocartesian for 1)i(j)3. Furthermore, if k

1
#k

2
#k

3
*1, then X0 is

non-empty. If two of the integers k
i
are *1, then X0 is connected.

Remark 5.2. Here is the why the result is true on the level of ordinary homology. Call
the 3-cube Xv and rewrite it as a map of squares ½vPZv. Let H*(Xv) mean the reduced
homology of the iterated homotopy cofiber of Xv. This measures the extent to which Xv fails
to be cocartesian on the level of homology.

For general reasons, there is a long exact sequence

2PH*(½v)PH*(Zv)PH*(Xv)P2 .

By hypothesis, H*(Zv) is trivial. The dual Blakers — Massey theorem for 3-cubes [4, Theorem
2.6] implies that H*(Xv) vanishes in degrees )k

1
#k

2
#k

3
#1. This shows that H*(½v)
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vanishes in degrees )k
1
#k

2
#k

3
, which is what the theorem asserts on the level of

homology.

Proof of ¹heorem 5.1. We can map the 3-cube Xv to another 3-cube by a pointwise weak
equivalence such that every map in the new cube is a fibration. So without loss in generality,
we will assume that the maps of Xv are all fibrations.

If k
1
#k

2
#k

3
*1, then Remark 5.2. shows that H*(½v) vanishes in degrees )1.

A straightforward argument involving the Mayer—Vietoris sequence implies that X0 is
non-empty.

If two of the k
i
, say k

1
,k

2
*1, then the map H*(X0)PH*(X1

) is an isomorphism in
degree 0, because X

2
PX

12
is 1-connected and the square containing X0, X1

, X
2
and X

12
is

homologically 2-cocartesian (again by Remark 5.2). It follows that X0 is connected (since
X

1
is connected).
We now prove the part of the statement concerning the degree to which the 2-faces

meeting X0 are cocartesian. Choose any 2-face of Xv which meets X0, say

It will be enough to show that this square is (k
1
#k

2
#k

3
)-cocartesian. Without loss in

generality, we can assume that k
i
*0. Call this square ½v. We consider two cases.

Case (1). k
3
"0.

In this instance we are asking whether ½v is (k
1
#k

2
)-cocartesian. The 2-face opposite to

½v in the 3-cube Xv is cocartesian (the one involving X
2
, X

3
, X

23
and X

123
), so by the

Blakers—Massey theorem for squares [4, p. 309] the latter 2-face is (k
1
#k

2
!1)-cartesian.

But this implies that ½v is also (k
1
#k

2
!1)-cartesian, since Xv is cartesian (compare

[4, Proposition 1.6]). Applying the dual Blakers—Massey theorem, [4, Theorem 2.6] we
infer that ½v is (k

1
#k

2
)-cocartesian. This completes case (1).

Case (2). k
3
*1.

The square ½v factorizes into four squares:

where the new spaces introduced are all fiber products. Let us give each of the newer squares
a name: the square on the upper left will be denoted (I), the one on the upper right (II), lower
left (III) and lower right (IV). It will be enough to show that each of the squares (I)—(IV) is
(k

1
#k

2
#k

3
)-cocartesian.
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CLAIM 5.3. ¹he square (I») is R-cocartesian.

The square (IV) is obtained from the R-cocartesian square

by taking the pullback of its spaces along the map X
12
PX

123
. This procedure preserves

the degree to which a square is cocartesian, so Claim 5.3 follows.

CLAIM 5.4. ¹he squares (II) and (III) are (k
1
#k

2
#k

3
)-cocartesian.

First note a general fact: let AvPCv and BvPCv be morphisms of squares of spaces
such that each of the squares Av , Bv and Cv is cartesian and a pointwise fibration (i.e.,
A

S
PC

S
is a weak equivalence and fibration for all SLM0,1N). Then the square Av ]

Cv
Bv

(given by A
S
]

CS
B
S
) is also cartesian.

A straightforward check (which we omit) shows that the square (II) is obtained in this
fashion. Consequently, (II) is cartesian. In particular, the map X

1
]

X13
X

3
PX

1
is k

1
-

connected (since it opposes the map X
3
PX

13
in (II)). Similarly, the map

X
1
]

X13
X

3
PX

12
]

X123
X

3
is (k

2
#k

3
!1)-connected, since its connectivity may be identi-

fied that of X
1
PX

12
]

X123
X

13
, and the latter map is (k

2
#k

3
!1)-connected, by the

Blakers—Massey theorem applied to the square involving X
1
, X

12
,X

13
and X

123
. Claim 5.4

for (II) now follows by applying the dual Blakers—Massey theorem. The argument for the
square (III) is similar, and will therefore be omitted.

CLAIM 5.5. ¹he square (I) is (k
1
#k

2
#k

3
)-cocartesian.

The square (I) is cartesian, since Xv is (the homotopy limit of Xv with X0 deleted
coincides with the homotopy limit of (I) with X0 deleted). As the map
X

1
]

X13
X

3
PX

12
]

X123
X

3
is (k

2
#k

3
!1)-connected (see Claim 5.4 above), we infer (using

the cartesian-ness of (I)) that the map X0PX
2
]

X23
X

3
is also (k

2
#k

3
!1)-connected.

The map X0PX
1
]

X13
X

3
is (k

1
#k

3
!1)-connected (this can be seen as follows: The

squares (I) and (III) taken together are cartesian, and the parallel map X
2
PX

12
]

X123
X

23
is (k

1
#k

3
!1)-connected, by the Blakers—Massey theorem for the cocartesian square involv-

ing X
2
, X

12
,X

23
and X

123
).

It follows by the dual Blakers—Massey theorem that the square (I) is

(k
2
#k

3
!1)#(k

1
#k

3
!1)#1"k

1
#k

2
#2k

3
!1

cocartesian. By assumption k
3
*1, so the displayed integer is at least k

1
#k

2
#k

3
. This

establishes Claim 5.5, and completes the proof of Proposition 5.1. h

The following lemma will be used in the next section.

LEMMA 5.6. ¸et
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be a commutative square of spaces.

(1). If the diagram is cocartesian and the map X0PX
2

is r-connected, then the map
X

1
PX

12
is also r-connected.

(2). Assume that the diagram is cocartesian. If the map X0PX
1

is 2-connected and the
map X

1
PX

12
is s-connected, then the map X0PX

2
is also s-connected.

Proof. (1). By homotopy invariance, we can assume that X
2

is obtained from X0 by
attaching cells of dimension 'r. Then up to homotopy, X

12
obtained from X

1
by

attaching cells of dimension 'r. Hence X
1
PX

12
is r-connected.

(2). The assertion is trivial if s)!1. We now argue by induction. Suppose that the
result holds for some s*!1, and let X

1
PX

12
be (s#1)-connected. It follows by

the induction hypothesis that the map X0PX
2

is s-connected. Let r be the connectivity of
the map X0PX

1
. The Blakers—Massey excision theorem implies that the diagram is

(r#s!1)-cartesian. Since r*2, we infer that the diagram is (s#1)-cartesian. Consequently,
X0PX

2
is also (s#1)-connected. This completes the inductive step. h

COROLLARY 5.7. ¸et

be a commutative diagram of connected spaces. Assume that

f the outer square is j-cocartesian for some j*0,
f the right-hand square is cocartesian, and
f BPC is 2-connected.

¹hen the left-hand square is also j-cocartesian.

Proof. Assume without loss in generality that APB and BPC are cofibrations. For
formal reasons, if the right-hand square is cocartesian then so is the square

Since BPC is 2-connected we can apply Lemma 5.6(1) to infer that the left vertical map is
also 2-connected. Now use Lemma 5.6(2). h

Notes 5.8. Richter [13] had the first proof of Theorem 5.1 under the assumption that all
spaces of X0 are simply connected (see Remark 5.2 for the proof in this instance). My
original proof of the face lemma required each of the k

i
to be *2. The above proof, due to

Goodwillie, places no constraints on the k
i
.

6. PROOF OF THEOREM A

We recall the set-up of the introduction. Let K be a connected homotopy finite space
with hodimK)k. Let (X, LX) be a PD pair of dimension n. Let f : KPX be an r-connected
map. Recall the statement of Theorem A:
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THEOREM 6.1. If k)n!3 and r*2k!n#2, then f PD embeds.

Proof. By Lemma 3.1 there exists a non-negative integer j such that the composite

K fP XLX]Dj

PD embeds. By a downward induction on codimension, we may assume that j"1. The
strategy will be to recognize the PD embedding of KPX]I as a decompression of a PD
embedding of f :KPX (cf. Lemma 2.3).

Let

be a PD embedding of K fPXLX]I (in codimension *n!k#1). Recall that there is
a factorization L(X]I)P¼PX]I. The space L(X]I) is just &

X
LX. In particular ¼ is an

object of Top+ and &
X
LXP¼ is a morphism of Top+.

Using functorial factorization, we may assume that ¼ is fibrant. Using the projection
X]IPX, we will from now on be considering the square given by replacing X]I by X.
We can also assume that the map f :KPX is a fibration.

CLAIM 6.2. ¹he object ¼ desuspends relative to &
X
LX, i.e., there is a cofibrant object

C3Top
@X

, a cofibration LX ÅC and a weak equivalence

&
X
C FP¼

which is relative to &
X
LX. Moreover, the map CPX can be chosen as (n!k!1)-connected.

The proof of Claim 6.2 will use the Desuspension Theorem 4.9. Since ¼PX]I
opposes A@PK in a cocartesian square, Lemma 5.6(1) shows that the object ¼3Top+ has
connectivity one less than the connectivity of the map A@PK. Since (KM ,A@) is a PD pair of
dimension n#1, this connectivity is just n!k. Consequently, ¼ is an (n!k!1)-connected
object. In particular, the codimension*3 hypothesis says that X and ¼ have isomorphic
fundamental groups, so every local system on ¼ arises by pullback from one on X.

Furthermore, there are isomorphisms

H*(¼M ,&
X
LX)

W*W++ H
n`1~*(¼M ,A@)%9#*4*0/+ H

n`1~*(XM , K)

for any local system on X. Hence, the fact that f is r-connected implies these groups vanish
whenever **n!r#1. Therefore the map &

X
LXP¼ has vanishing relative cohomology

in these degrees.
Applying Addendum 4.9, we see that ¼ desuspends relative to &

X
LX provided that

n!r)2(n!k!1)#1. This will happen if r*2k!n#1, so we have one dimension to
spare. This establishes Claim 6.2.

Let K¬ KPK be the fold map. Let K¬ KP¼ be the composite

K¬K f¬f
&"X¬ XL¼.
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These maps are compatible with projection to X, and therefore define a map

K¬K P K]
X
¼,

where the target denotes the fiber product of K with ¼ along X (recall we have arranged it
so that f :KPX is a fibration, so the fiber product has the correct homotopy type). By the
Blakers—Massey theorem, the map A@PK]

X
¼ is (r#n!k!1)-connected. But K¬K has

hodim)k, so obstruction theory gives us a factorization up to homotopy

K¬KPA@PK]
X
¼

provided r*2k!n#1, so we again have one dimension to spare. By functorial factoriz-
ation, we can assume that the map A@PK]

X
¼ is a fibration. But then the homotopy

lifting property gives us a factorization on the nose.
The data constructed thus far may be displayed as the following commutative 3-

dimensional punctured cube:

The bottom 2-face of this cube is the cocartesian square associated with the weak

equivalence R
X
C FP¼; the space XM denotes the mapping cylinder of CPX.

Let B be homotopy inverse limit of the punctured cube. Then the resulting 3-cube of
spaces

is commutative up to canonical homotopy.
It will be more convenient to work with a commutative version of this cube. One way to

do this is as follows: map the original punctured cube to a new punctured cube by
a pointwise weak equivalence, in such a way that the limit of the new punctured cube is the
homotopy limit of the original punctured cube. The new punctured cube together with its
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limit gives the desired strictly commutative cube. In what follows, we will be working with
the commutative cube. However, to avoid a notational clutter, we will keep the notation of
the old cube to designate the spaces in the new one.

Consider next the top 2-face of the 3-cube.

CLAIM 6.3. ¹he top 2-face

is (2(n!k!1)#r)-cocartesian. Moreover, the space B is connected.

We wish to apply the Face Theorem 5.1. We therefore need to verify its hypotheses.
All spaces of the 3-cube with the exception of perhaps B are connected. It is straightfor-

ward to check that each 2-face meeting ¼ is cocartesian. The maps labeled KPA@ and
CPX are (n!k!1)-connected. The maps labeled KPX are r-connected. With the
notation as in the Face Theorem, this means k

1
"k

3
"n!k!1 and k

2
"r. Since

k)n!3, we infer that k
1
,k

3
*2. Consequently, we may apply the Face Theorem to

conclude that B is connected and that the square is (2(n!k!1)#r)-cocartesian. This
proves Claim 6.3.

We continue to restrict our attention to the top face.

CLAIM 6.4. ¹here exists a connected space A and a (2(n!k!1)#r!2)-connected map
APB such that the square

(given by replacing B by A), is cocartesian.

Choose a basepoint for B to equip the top 2-face with the structure of a square of based
spaces. The map KsKPA@ has vanishing relative cohomology (with respect to any local
system on A@) in degrees *n, since A@ is a PD space of dimension n and k)n!3. Thus if

n)2(n!k!1)#r ,

i.e., when r*2k!n#2, we can apply 4.2 to obtain a space A and a (2(n!k!1)#r!2)-
connected map APB which satisfies the statement of the claim.

We note that this is the first (and only) time in the argument that the sharp lower bound
for the connectivity of f is used.

Now consider one of the other 2-faces of the 3-cube meeting B, labeled
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Recall that LXPX comes equipped with a factorization LXPCPX. Replace B by A, and
replace XM by X to obtain a new commutative square

CLAIM 6.5. ¹his square is cocartesian.

The see this, consider the diagram

The right-hand square is clearly cocartesian. The outer one is also cocartesian because it
factors as a pair of cocartesian squares

The map CPX is 2-connected by construction. Then Claim 6.5 follows by application of
Corollary 5.7 to the previous diagram.

CLAIM 6.6. For the cocartesian square of Claim 6.5, we have

(1) ¹he map APK is (n!k!1)-connected (in particular, it is 2-connected).
(2) ¹he spaces A and C are homotopy finite.
(3) ¹he pair (KM ,A) is a PD pair of dimension n with fundamental class induced from [X].

To prove (1), we return to the cocartesian square of Claim 6.4. The map A@PK which
makes (KM , A@) a PD pair is (n!k)-connected (since it is part of a PD embedding). The maps
KPA@ of the square are coretractions to A@PK. Hence, the maps KPA@ are (n!k!1)-
connected. Applying Lemma 5.6(2), we see that APK is also (n!k!1)-connected, since
k)n!3.

To prove that A is homotopy finite, recall that a connected based space ½ is homotopy
finite if and only if n

1
(½) is finitely presented and the associated Z[n

1
(½)]-module chain

complex C*(½) is chain homotopy finite in the sense that it is equivalent to a bounded above
chain complex which is degreewise finitely generated and free (see [18, 2.2]).

Since n
1
(A)"n

1
(K) and K is homotopy finite, we infer that n

1
(A) is finitely presented.

Now use the homotopy cofiber sequence

C*(A)PC*(K)PC*(A@, K)

and the fact that A@ and K are homotopy finite to conclude that C*(A) is chain homotopy
finite. A similar argument shows that C is homotopy finite. This establishes (2).
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Assertion (3) follows from the isomorphism

H*(KM ,A)+H*`1(KM , A@)

(induced by the cocartesian square of Claim 6.4 with respect to any coefficient system on K,
using the fact that the fundamental class for (KM , A@) is induced from [X]I].

This completes the proof of Claim 6.6.
From the above it follows that

is a PD embedding. However, recall that we chose to replace the original homotopy
commutative 3-cube by a strictly commutative one (cf. before Claim 6.3). In doing so,
the space K got replaced by something else homotopy equivalent to it (although we did
not change the notation). The proof of Theorem A is completed by invoking Lemma
2.5(2). h
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Mathematicl Society, 1972, 35, 263—268.
7. James, I. M., Fibrewise homotopy theory. Handbook of Algebraic¹opology. North-Holland, Amsterdam, 1995,

pp. 169—194.
8. Klein, J. R., On two results about fibrations. Manuscripta Mathematica, 1997, 92, 77—86.
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