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0. INTRODUCTION

The algebraic K-theory of spaces functor X — A(X), defined by the
fourth author, relates the stable concordance space C(X) to the higher
algebraic K-theory of the integral group ring Z[m (X)] (see [5], [6], [7]).

In [1], we established a splitting of based spaces

AR(XxSY) ~  AM(X) x BAR(X) x N_A®(X) x N A™(X),

where A%(X) is a version of A(X) which incorporates finitely domi-
nated spaces.! In this splitting, BA/(X) denotes certain non-connective
delooping of A™(X), and the nil-terms N_A™(X) and N, A/(X) are
canonically isomorphic. This decomposition should be viewed as the
algebraic K-theory of spaces analogue of the “fundamental theorem”
for the algebraic K-theory of rings.

In [4], it was shown how to modify A(X) so as to equip it with an
involution. This involution corresponds under linearization to the in-
volution on the K-theory space of the group ring Z[m;(X)| which is
induced by mapping a matrix with Z[r(X)]-coefficients to its conju-
gate transpose (the conjugate is defined using the anti-automorphism
of m1(X) which maps an element to its inverse).

One interest in the involution on A(X) is in its relation to the involu-
tion on the stable concordance space C(X) (cf. [4, §2]). The eigenspaces
of the latter provide homotopy theoretic information about automor-
phism groups of manifolds (see e.g. [2] and [8]).

The main result of this paper is to identify how the involution on
AJ(X xS') acts with respect to the decomposition provided by the
“fundamental theorem”:

Date: December 6, 2000.

LThe higher homotopy groups of these spaces coincide. The essential difference
between them is that the group of path components of the former is isomorphic to
the projective class group Ko(Z[m1(X)]), whereas the group of path components of
the latter is isomorphic to a cyclic group.
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Theorem (Equivariant “Fundamental Theorem”). With respect to the
above splitting of AJ4(X xS1), the involution acts as a product of the
involution on A’(X), the delooped involution on BAM(X) and an in-
volution on N_AM(X)x N, A1(X) which transposes factors.

(For the precise statement, see Theorem 10.3.2 below.)

From a technical point of view, however, our purpose will be to
give another description of the involution on A%(X) which arises as a
(suitably modified) S.-construction. The main result is proved using
this alternative description. It should also perhaps be mentioned here
that Weiss and Williams [9] give yet another construction of a space

with involution having the underlying unequivariant homotopy type of
Af1(X).

We now briefly outline the contents of this paper. §1 is preliminary;
among other things it sets up equivariant duality. In §2 we extend the
notion of duality to filtered objects. In §3 we define categories of fil-
tered equivariant spaces which are equipped with duality data. These
categories are equipped with a ‘stabilization’ functor, which is given
by suspension, and a ‘left forgetful’ functor which forgets the duality
data. Stabilizing our model to infinity, we show that the approximation
defined by the left forgetful functor tends to a homotopy equivalence
on realizations. In §4, by varying the lengths of our filtrations and
including suitable quotient data, we assemble the categories defined
in §3 into a simplicial category. We then use the realization theorem
applied to the left forgetful functor to compare our simplicial category
with the S.-construction. In §5 we define ‘dualization functors’. These
are in turn used in §6 to define the canonical involution on the alge-
braic K-theory of spaces. Also in §6, compare our involution with the
involution of [4]. In §7 we extend the theory to the projective line cat-
egory of [1]. In §8 we construct an equivariant version of the ‘canonical
diagram’ of [1, 4.13]. The material contained §9 is preparation for the
proof of main result. The proof of the main result is the content of §10.

1. PRELIMINARIES

1.1. Equivariant spaces. The term space in this paper refers to a
topological space which has the compactly generated topology. Prod-
ucts are to be taken in the compactly generated sense, and function
spaces are to be given the compact-open topology.

Let M. be a simplicial monoid, and let M = |M.| be the topological
monoid which arises by taking the geometric realization of its under-
lying simplicial set. If X and Y are based, left M-spaces, we say that
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a based M-map X — Y is a weak equivalence if (and only if) it is
a weak homotopy equivalence of the underlying topological spaces. A
weak equivalence will often be indicated by the symbol =.

Let T(M) denote the category whose objects are based M-spaces
and whose morphisms are based M-maps. The cell of dimension n is
the (unbased) M-space D"x M with action defined by left translation.
Similarly, one has the (unbased) equivariant sphere S™ ! x M.

If Z is an object of T(M) and a: S* 'xM — Z is an equivari-
ant map, then attaching D"xM to Z along « defines an object Z U,
(D"x M) € T(M). If an object Y is obtained from an object X up by
a (possibly transfinite) sequence of cell attachments, then we say that
the inclusion X — Y is a cofibration. More generally, we include in the
class of cofibrations retracts of such inclusions. Observe that cofibra-
tions have the equivariant homotopy extension property. A cofibration
will often be specified by the symbol .

An object Z € T(M) is said to be cofibrant if the map * — Z is a
cofibration. We let C(M) denote the full category of T(M) consisting
of the cofibrant objects.

An object Y € C(M) is finite if it is isomorphic to a finite M-CW
complex which is free away from the basepoint. It is homotopy finite
if there exists a weak equivalence Y — Z, where Z is finite. The full
subcategory of C(M) whose objects are homotopy finite will be denoted
Cus(M).

An object of C(M) is said to be finitely dominated if it is a retract
of a homotopy finite object. Let Cs(M) denote the full subcategory of
C(M) whose objects are finitely dominated.

Call a morphism in any of these subcategories a cofibration if it is one
when considered in T(M). We shall let hC; (M) denote the subcategory
of C;(M) consisting of the weak equivalences, where ? denotes one of
the decorations hf, fd. With these conventions, C;(M) is a category
with cofibrations and weak equivalences.

1.2. The based equivariant sphere. Let S%, € C(M) be M with
the addition of a basepoint. Identify the n-sphere S™ with the smash
product of n-copies of S'. The based left M-space

Sn o= S" A SY,

is also a left M°P-space, where M°P denotes the opposite monoid of
M. The induced left (M x M°P)-action is given in formulas as follows:
if (g, h°?) € M x M°P is an element, then the action of this element on
ST is given by

(v,z) +—  (v,gzh) forve S",x e Sy, .
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Another structure we shall require is the homeomorphism
St 5 ST
defined as follows: with respect to the natural coordinates on the smash
product, ¢ is defined by
(1.2.1)
(X1, ey T, m) = (Tp, oo, 1, MP) for (z1,...,1,) € S",m € SY,.

We remark that if M is the realization of a simplicial group, then there
is a canonical isomorphism

M = M°P
given by m — (m™1)°P. With respect to the identification provided by

this isomorphism, ¢: ST, — S%, is an involution (.2 = id).

1.3. Definition of equivariant duality. Let Y € C(M) and Z €
C(M°P) be objects. Then in a natural way, the smash product Y A Z
has the structure of an object of C(M x M°P).
By an m-pairing, we mean an (M x M°P)-map
YANZS ST,
Suspending k-times, u defines an (m-+k)-pairing

idsk Au

YAEFRZ)=SA (Y ANZ) 25 SEAST = Smtk
Hence, for each £ > 0, we obtain a formal adjoint
Skz B (Y, STk

where Fy; (Y, S7%) is the function space of based M-maps from Y to
Stk

Observe that the action of M°P on S7* induces an action of M°P on
the function space, and adj,u is M°P-equivariant with respect to this
choice.

Definition 1.3.1. (cf. [4, 1.10]). Suppose that Y € C(M) and Z €
C(MP°P) are finitely dominated. We say that an m-pairing

YANZSSH

is a duality (more precisely, m-duality) provided that there exists a
non-negative integer € (possibly depending on m, Y and Z, but not on
k), such that the map

Skz U p (Y, ST
defined above is (2k — €)-connected, for all £ > 0 sufficiently large.
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The following is implicit in [4]—we omit the details.

Lemma 1.3.2. (1). Duality pairings are compatible with suspension,
i.e., if Y N Z — ST} is a duality map, then so are the maps

(BY)ANZ — ST and Y A (XZ) — Syt

given by suspending once and shuffling the suspension coordinate.
(2). An m-pairing u: Y N Z — ST of finitely dominated objects is a
duality if and only if the induced map

Q(Z) = Fu(Y,Q(SW))

is a weak homotopy equivalence, where Q(—) = Q®°X>® denotes ordi-
nary stable homotopy.

(8). The duality condition is symmetric in the following sense: If
u: Y NZ — Sy} is a duality, then so is

i ZAY HYANZS Smagm
where T 15 the map which permutes factors. ]

It was proved in [4] that a homotopy finite object admits a homotopy
finite dual (in the simplicial setting). The steps of the proof are as
follows:

1. Tt is enough to show that a finite object admits a homotopy finite
dual.

2. The map S9, A S%0p — S, given by (m,n°?) — mn is a duality
map (note that S$, A S%,., is just Mx M with an additional
basepoint).

3. Suspending, we have for each pair of non-negative integers £ and
£, duality maps

Ski A Siger = Sirt.

4. Every finite object is given by attaching a finite number of cells,
starting with a point. Induction plus the previous step enables
one to construct duals inductively via cell attachments.

In summary, we have

Lemma 1.3.3 (cf. [4, 1.13]). Let Y € C(M) be a homotopy finite ob-
ject. Then there exists a non-negative integer m, an object Z € Cyp(M°P)
and a duality map

YNZ— Sy

The next result is an extension of the previous one in that we show
that a finitely dominated object of C(M) possesses a finitely dominated
dual.
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Lemma 1.3.4. Let Y € Cy(M) be an object. Then there exists an
positive integer m, an object Z € Cig(M°P) and a duality map

YAZSSm .

Proof. If f: A — X is a morphism of Cy(M) and u: ANA* — ST} and
v: X A X* — ST} are duality maps, then f induces an umkehr map

[Tk xr 3R
(for k sufficiently large) which is unique up to homotopy. The mor-

phism f'is gotten by applying elementary obstruction theory and the
definition of duality 1.3.1 to solve the factorization problem

adjgv
X T Far(X, St

i’ lf*

~

EkA* — FM(Aa S]T\Z_HC) )

adjru

where f* is the map induced by f on function spaces.

If Y is finitely dominated, then there exists a homotopy finite object
K, a cofibration ¢: Y »— K, and a morphism r: K — Y such that ro¢
is the identity. Observe that the composite tor: K — K is idempotent.

By 1.3.3 there exists a duality map v: KAL — S} if m is sufficiently
large. Then the umkehr map

(ior): TFL — TFL
is equivariantly homotopy idempotent (if £ is large). Fix therefore a
large integer k, and let Z denote the homotopy colimit of the sequence

skp, Uk sk, Gk

Then Z is finitely dominated (since it is a homotopy retract of Y*L)

and the duality map v determines a duality u: Y A Z — ST which
is canonically defined up to equivariant homotopy. O

2. FILTERED DUALITY

2.1. Filtered objects. A filtered object of length n of Cy(M) is de-
fined to be a sequence of cofibrations

A = A — Ay — ... — A,
of Cyy(M). For 0 < i < j < n, there are associated quotients
Aij = Aj[A;

which are well-defined up to isomorphism (cf. [5, 1.1]; we will later
include the choice of quotients when defining K-theory). Ag will denote
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the zero object (= ). A morphism A — A’ of filtered objects length
n is a compatible collection of morphisms A; — A} for i < n. A
weak equivalence is a morphism A — A’ such that A; — Al is a weak
equivalence for all i.

2.2. Definition of filtered duality. We shall describe what it means
to “dualize” a filtered object. Suppose that we have another filtered
object

B = B — B —--— B,,
this time of Cgy(M°P).
Definition 2.2.1. A filtered m-pairing for A and B is an (M x M°P)-
equivariant map

u: Ap N B, — Sy

such that its restriction to A; A B; is the trivial map to the basepoint
whenever i +j <n (for all 0 < i,5 < n).

(Since there is a cofibration B; — B,_;, for i + j < n, a map
u: A, A B, — S7} is a filtered m-pairing if and only if its restriction
A; A B,,_; is trivial for all 3.)

For a filtered m-pairing u: A, A B,, — S7}, and integers ¢ and j such
that 0 <4 < j < n, there is an associated map

AijABy jn i =5 Sm
which is defined by the recipe

e restrict u to A; A B,_;,
e observe that wu restricted further to

Aj NBy_jUpns,_; Ai N By

is trivial,
e take the induced map on the quotient
Ai,j /\ Bn—j,n—i == (A] /\ Bn_z)/(A] /\ Bn—j UAi/\Bn—j Az /\ Bn—z) .

Definition 2.2.2. A filtered m-pairing u: A, A B,, — S}; for A and
B is said to be a filtered duality (more precisely filtered m-duality)
provided that the induced maps

Usj,j - Ai,j A Bn—j,n—i — SAW}
are duality maps, for all 0 <i < j < n.

Remarks 2.2.3. (i). To check that a filtered m-pairing u: A, A B, —
ST is also a filtered duality, it is enough to check that duality holds on
adjacent indices, i.e., that the maps

. m
Uiit1: Aiit1 AN Bp_icin—i = Sy
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are duality maps for 0 < 7 < n — 1. This assertion follows from an
induction in j using the cofibration sequences A; ; — A; j11 — Aj 1
and anjfl,nfj — anjfl,nfi — anj,nfi-

(#4). The condition for u to be a filtered duality can be rephrased in
yet another way. Set B := B,,_;, and write

for the map ug;. Then u is a filtered duality if (and only if) u; is a
duality for 0 < ¢ < n. This follows by induction using the cofibration
sequences A; — A; — A;; and B,_jpn_; — BY — B,

We now have the filtered analogue of 1.3.4.

Proposition 2.2.4. Let A = (4, — --- — A,) be a filtered object
of Cra(M). If m is sufficiently large, then there ezists a filtered object
B = (B — -+ By) of Cua(M) and also a filtered duality map
u: Ap AN B, — ST, .

Proof. One proves this by induction on n. When n=1 this is just 1.3.4.
To avoid notational clutter, we will give the argument in the case n=2
and omit the general case (which is similar).

Consider the filtered object A; — A,. Applying 1.3.4 to A;, we
obtain an equivariant duality map A; A C — S} for some choice of
C € Cy(M) and m sufficiently large. Applying 1.3.4 again, this time
to Ag, we can find an equivariant duality map A, A Z — S7;.

Let i: A; > A, denote the inclusion map. Then there is an umkehr
map

iz & sic

provided that j is sufficiently large (cf. the proof of 1.3.4). Let U denote
the mapping cylinder of i*. Then there is a factorization of ' as

YZ—USYIC.

Let B; denote the quotient U/37Z, and let By denote the map given
by taking the mapping cone of the quotient map U — B;. Then we
have a cofibration B; — B;. Observe that By is weak equivalent to
Y17 and that By/Bj is weak equivalent to X/ F1C.

By construction of B; and B,, the duality maps A; A C — S}}
and Ay A Z — ST induce duality maps A; A (By/By) — Syt and
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Ay A By — ST* in such a way that the diagram of adjunctions

Ay — Fy(By/By, ST

| !

Ay — Fyp(By, Sptith)

is equivariantly homotopy commutative. Since A; ~— Ay is a cofi-
bration, we can use the equivariant homotopy extension property to
deform the map Ay — Fy(Bs, ngﬁl) through morphisms of T(M)
to a new map so that the diagram becomes strictly commutative with
respect to the new map. The adjoint of the new map is then a filtered
duality Ay A By — SA"/}ﬂH (the triviality condition in 2.2.1 satisfied
since in this case it amounts to checking that the restriction of the
map Ay A By — SA"/}HH to A; A By is the constant map to the base-
point; this holds because the restriction to A; A By factors through
A1 N BQ/Bl) O

3. THE COMPARISON THEOREM
3.1.  Given integers m,n > 0, let
hD,, S, Cra (M)
be the category in which an object is given by a triple
(A, B,u)
in which
e A is a filtered object of length n of C(M);

e B is a filtered object of length n of C(M°P);

o u: A, A B, — ST} is a filtered m-duality.
A morphism (A, B,u) — (A, B',u') is specified by a weak equivalence
(of filtered objects) f: A — A’ and a weak equivalence g: B' — B such
that the following diagram commutes:

fAid
Ao A B 4 A B

idA g\\/ J/u,’

Ay A B, — ST

Notice that g is an umkehr map for f.
For non-negative integers k£ and ¢, the suspension functor

hDmSuCra(M) 25 WDy eSuCra(M)
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is defined by

(A,B,u) — (ZFA, 2B Sh)),
where

e Y¥A denotes the filtered object which is given by k-fold suspension
of the terms of A and YX¢B is defined similarly;
o the filtered duality map ¥%*u is the composite

(S A A (SB,) = SEA (A AB,)ASE A gk A g A Gt o Ghtmitt

where the first homeomorphism is given by permuting S¢ with B,
in the smash product, and the last homeomorphism is given by
concatenation.

3.2. Let hDS,Cs(M) be the category which is defined by taking the
colimit with respect to the suspension maps X1, i.e.,

hDS,Cpy(M) = lim hDpS,Cra(M) .

(=b1)

Let hS,,Cpq(M) denote the category whose objects are filtered objects
of Cyy(M) of length n and whose morphisms are weak equivalences of
filtered objects.

Define the left forgetful functor

hDmSaCra(M) %5 hS,Cha(M)
by (A, B,u) — A. Then we have
oo = Togy,

where Y on the right-hand side is induced by the suspension functor
on the category Cr(M).

Taking the colimit with respect to the indexing sequence defined by
suspension, we have an induced map

IWDS,Cra(M)| %5 | lim hS,Cp(M)] .

~ )
The following is a variant of [4, 1.15].
Theorem 3.2.1 (Comparison Theorem). The map

IhDS,Cp(M)| % | lim hS,Cra(M)].
(=)

is a homotopy equivalence (of unequivariant spaces).
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Proof. The goal is to use theorem A of [3] to deduce the result. The
strategy is to show that suitable categories arising as the right fiber are
contractible. Our method of proof is similar to the proof of [5, 1.6.7].

Let A and B be categories, f: A — B a functor, and let b € B be
an object. Recall that the right fiber over b is the category b\ f whose
objects are given by maps x : b — f(a). A morphism

(b= f(a) = (0 f(a))

is specified by a map s: a — a' such that z followed by f(s): f(a) —
f(a') coincides with y. To show that b\ f is contractible after realiza-
tion, it is sufficient to show that every simplicial map X — N(b\f)
is null homotopic, where Nb\ f denotes the nerve of the category b\ f
and where X ranges through non-singular simplicial sets (recall that
a non-singular simplicial set is a simplicial set such that for each non-
degenerate k-simplex the representing map A[k] — X is an embed-
ding).

To each simplicial set X', let simp X’ denote its category of simplices.
The ‘last vertex’ map NsimpX' — X' is always a weak homotopy
equivalence, where NsimpX' denotes the nerve of simpX’. To each
non-singular simplicial set X, let simp"® X denote the partially ordered
set of non-degenerate simplices. The inclusion map simp®?X — simpX
is an equivalence after realization (see e.g., [5, p. 359]).

Given a map X — N(b\f), there is an associated sequence of func-
tors

simp™X 5 simpX — simpN(b\f) = b\f
and also a commutative diagram of simplicial sets

NsimpX —— Nsimp(N(b\f))

=| E

X — N(b\f)

(cf. [op. cit., p. 355]). Consequently, a map X — N (b\ f) is null homo-
topic if the induced map simp™X — b\ f is null homotopic. From this
we see that to prove b\ f is contractible, is is sufficient to prove that
a diagram D in b\ f possesses a ‘cone point’ when D ranges through
all finite partially ordered sets. By a cone point, we mean a chain of
natural transformations to a constant diagram.

To prove the theorem, it is sufficient to show that the right fiber Y\ ¢,
of the functor ¢r,: hD,,S,,Cra(M) — hS,Cra(M) becomes contractible
when m tends to co. By 2.2.4, Y\¢;, is non-empty if m is sufficiently
large. For the moment, choose such an integer m.
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Suppose that D is any finite, partially ordered diagram in the right
fiber. Then D is represented by data of the kind {A%* B* u“}.ep
together with compatible maps Y — A%. At the expense of varying D
up to object-wise weak equivalence, and possibly increasing the value
of m, we will show how to find a cone point for D in three steps. In
order to avoid notational clutter, for the rest of the proof we will avoid
specifying the duality maps when referring to vertices of the diagram.
Thus, a vertex of D is to be denoted by (A%, B*).

Step (1). Replace D up to object-wise weak equivalence by the diagram
whose vertices are

Y, B%),
with associated filtered duality map given by the composite
Y, ANBy — A2 \NBY — ST} .

The edges of the new diagram are evident. By abuse of notation, we
denote the new diagram by the same symbol D.

Step (2). For each index a, we set
V* = hocolim B".

a<ly
where the homotopy colimits are indexed by the sub-poset of objects
> «. Then we have a new diagram

Dy = {(Y;V)}a

such that Dy maps to D by object-wise weak equivalence.

Step (3). Set

B =colimV*.

By construction, the map from the homotopy colimit of the V* to B is
a weak equivalence. Moreover, B has the structure of a filtered object,
and there is a map B,, — Fj/(Y,, ST;) because there is a compatible
family of maps V,* — Fy(Y,,ST;) (the adjoints to the given duality
pairings). We do not assert that the adjoint B, AY, —, ST is a filtered
duality map. However, at the expense of increasing m, we can map B
to a filtered dual for Y.

To see this, let Z denote any filtered dual for Y. Note that B, is a
finitely dominated object (since it is weak equivalent to the homotopy
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colimit of a finite diagram of finitely dominated objects). Consider the
lifting problem

B,

Z, s F(Y,,Sm) .

At the expense of suspending B,, and Z, (and increasing m) a suitable
number of times, the bottom map can be made highly connected in
such a way that its connectivity exceeds the dimension of some finite
domination of B,, (suspended that many times). Let us assume that
this has been achieved.

By obstruction theory, we can fill in the dotted arrow up to homo-
topy. Moreover, the dotted arrow can be taken as a morphism B — Z
(we omit the proof; it is a straightforward, albeit tedious induction akin
to the the one appearing in 2.2.4). Also, at the expense of replacing 7
by a suitable mapping cylinder, we can assume that the above diagram
is strictly commutative. Assume that all of this has been done.

Then the foregoing manipulations yield a compatible family of mor-
phisms

(v, B%) = (¥, 2).
Consequently (Y, Z) is a cone point for D.

Thus as m tends to oo the right fiber becomes contractible, as
claimed. Applying [3, Th. A] then completes the proof. O

4. THE DS.-CONSTRUCTION

4.1.  We now let the n vary and show how to modify ADS,,Cs (M) so
that it becomes a category in degree n of a simplicial category. This is
done by including choices of quotients for the filtered object data. Let
us first recall the definition of the S.-construction.

Definition 4.1.1. For a category with cofibrations and weak equiv-
alences in the sense of [5], we let hS,,C' be the category in which an
object consists of

e A filtered object of C' of length n
Ay — Ay - A,

and
e for each 0 < i < 7 < n, a specified choice of quotient object

i’j
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A morphism A — B of hS,C is defined to be a compatible collection
of weak equivalences A; — B; for i < n.

If A is a filtered object of length n, define d;(A) € hS, 1C to be the
object which for ¢ > 0 is given by deleting A; from the sequence which
defines A. If i = 0, then dy(A) is defined to be

Ag/Al — A3/A1 —r et r— An/Al .

Let s;(A) € hS,;+1C be the object given by inserting A; into the
sequence which defines A at stage i if i > 0; if if ¢ = 0, we let so(A) be
the object

x— A — Agr— - A,

The above equips the disjoint union of the hS,C with the structure
of a simplicial category (cf. [op. cit., 1.3]). Its realization |hS.C| is the
S.-construction of C. The loop space Q|hS.C| is the K-theory of C
([op. cit., p. 330]).

4.2. Let
hD;, 8.Cra (M)
denote the simplicial category which in simplicial degree n is the cate-
gory consisting of triples
(A7 B7 u) Y
where
e A is a filtered object of length n of C (M) together with a spec-
ified choice of quotient object A, ; = A;/A; for 0 < i < j < n;
e B is a filtered object of length n of C;(M°P) together with a
specified choice of quotient object B; ; = B;/B; for 0 < i < j < n;
e u: A, A B, — S} is a filtered m-duality.
Thus in simplicial degree n what is described above amounts to the

category denoted by hD,,S,Cs(M) in previous sections, except that
now we are including the choices of quotient objects.

Henceforth, hD,,S,Cri(M) stands for the category which includes
the choice of quotient data.

The simplicial category structure is more-or-less determined by de-
manding that the forgetful map

hDpSCra(M) = hS,Cpa(M)x hS, Cpy(MOP)P
(A, B,u) (4, B)

be simplicial in the A-variable and anti-simplicial in the B-variable (for
the definition of anti-simplicial maps, see 5.2 below).
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Explicitly, define the j-th degeneracy functor
$j: WDpSpCra(M) = hDySn11Cra (M)

by s;(A, B,u) = (s;(A), sn—;(B),u) for all j (where s;(A) and s,_;(B)
are defined as above, and u: A, A B, — S}, is now considered to be a
filtered duality map for filtered objects of length n+1).

Define the j-th face functor

dj: hDpSpCra(M) = hDpSp_1Ca(M)

by d;(A, B,u) := (d;(A), d,—;(B), d;(u)), where the description of d;(u)
will require a case distinction: 5 #0,n, 7 =0 or j = n.
o If j # 0,n, then d;(u) := u;
o do(u) is the filtered duality map uy,: A1 nAByn—1 — S7j induced
by u: A, A B, — ST} (where B,y := By,_1);
e d,(u) is the filtered duality map ug,—1: Aop—1 A B1,, — Shy in-
duced by u.
We omit the verification of the simplicial identities. In summary, we
have

Lemma 4.2.1. With the face and degeneracy functors described above,
hD,S.Cra(M) is a simplicial category. O

4.3. The suspension functors X% extend in this context to simplicial
functors
thSCfd(M) — th+m+gS.Cfd(M) .

Taking the colimit of the indexing sequence defined by X'!, we obtain
a simplicial category
WDS.Cpa(M).

Theorem 4.3.1. The left forgetful functor ¢, defines a homotopy equiv-
alence of unequivariant spaces

|hD8.(Cfd(M)| i) | E}I(T;)hS.Cfd(MN >~ |h8.(Cfd(M)| .

Proof. In each simplicial degree n, we have by 3.2.1 a homotopy equiv-
alence of unequivariant spaces

WD, Ca(M)| | lim hS,Cpa(2))

induced by ¢, (the extra choice of quotient data doesn’t change the
homotopy type of the realization of the categories in question). The
theorem now follows by the realization lemma (the second homotopy
equivalence results from the observation that suspension induces a ho-
motopy equivalence on S.-constructions by [5, 1.6.2]). O
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5. DUALIZATION

5.1. Define a contravariant functor
TM
thSHCfd(M) s th‘S'n(Cfd(M"p)
by
(A7 B7 ’U/) '_> (B7 A? tu)

where we recall that ‘u: B, A A, — ST, means the filtered duality
map given by the composite

B,ANA, 5 A, AB, 5 8" 5 ST,

in which 7 is the map which switches factors and ¢ is the homeomor-
phism defined in 1.2.1. Call TM the dualization functor.
The composite TM* o TM is given by

(A,B,u) +— (B,Aw) — (A,B('v) = (A Bu),
and is therefore the identity. Hence,

Lemma 5.1.1. The contravariant functor TM is invertible with in-
verse TM™.  Furthermore, TM is compatible with suspension in the
sense that

yhtoTM = TMoxbk,
(In particular, TM commutes with XH1.) ]

As n is allowed to vary, the "M assemble to define an anti-simplicial,
contravariant functor

WD S.Cra(M) 25 WD, S.Cpa (M)
where the term anti-simplicial means that

TL1(di(c)) = dn-i(T(c)  and T, (si(c)) = sn-i(T;" ()

n

for all objects ¢ € hD,,, S, Cra(M).

By 5.1.1, we have that 7™ commutes with the suspension functor
Y51 and therefore induces an anti-simplicial, contravariant functor on
colimits

hDS.Cpa(M) 25 hDS.Cpa( MP) .
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5.2. Before proceeding any further, we need to explain how anti-
simplicial maps give rise to maps of spaces on realization.

The topological standard simplex A™ has vertices given by the or-
dered set {0 < 1 < --- < n}, and therefore comes equipped with a

homeomorphism ¢, : A" 5 A" which is induced by linearly extending
1 n—1.

If f: X. = Y isan anti-simplicial map of simplicial sets (i.e., f(s;(z)) =
Sn—i(f(z)) and f(d;(z)) = dn—i(f(z)) for z € X,,), then f induces a
map of realizations |X.| — |Y.| which is obtained by gluing together
the set maps X, x A" — Y, x A" defined by (z,t) — (f(x), pn(1)).

In particular, if C' — D is a contravariant functor, then we obtain an
anti-simplicial map of nerves, and hence an induced map |C| — |D|.

Let f: C. — D. be an anti-simplicial (covariant) functor of simplicial
categories. The nerve N.C. is a bi-simplicial set. The realization of C.
is constructed from the spaces

N, Cjx A"x A¥
modulo the gluing relations. Then f induces a map of spaces
|C.| — |D.|

via the map N,CyxA"xAF — N, D, xA"xA* given by (z,s,t) —
(f (@), Bn(s),1).

We can also combine these constructions: If f: C. — D. is an anti-
simplicial, contravariant functor, then f induces a map |C.| — |D.|. In

this case the map is induced by (z, s,t) — (f(z), dn($), dk(1))-

5.3. Applying the proceeding paragraph to the (anti-simplicial, con-
travariant) dualization functor 7'V, we obtain a map of based spaces

IBDS.Cpa(M)| 225 |RDSCp (MP)|

which we term the dualization map. We now list the properties of TM,
which are an immediate consequence of the definitions and 5.1.1.

Lemma 5.3.1. The dualization map T™ is a homeomorphism whose
inverse is TM™ . If M is the realization of a simplicial group, then
TM = TM™ with respect to the identification M = M°P. Hence, TM is
an involution in this case (i.e., T o TM = id).

6. THE CANONICAL INVOLUTION

6.1. Actions on loop coordinates. If Y is a based Z/2-space, then
its loop space can be equipped two different Z /2-actions:
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o Let §1 denote the circle with based action given by reflection.

Define
QY = Map*(‘glay)

where the mapping space is given the Z/2 action defined by con-
jugation of functions: (7 x f)(z) = 7f(7z).

e The action given by letting Z/2 act trivially on the loop coordi-
nate: (7 x f)(z) = 7f(x). We denote this Z/2-space by QY.

6.2. Definition of the canonical involution. We now define a Z/2-
equivariant model for the functor X — A®(X). Let X be a connected
based space. Let G. denote the the Kan loop group of the simplicial
total singular complex of X. Setting G := |G.|, we have that the
classifying space BG is weak homotopy equivalent to X.

Using the involution on |ADS.Cyy(G)| defined by the dualization map
T¢. we now have the definition of the ‘canonical involution’:

Definition 6.2.1. Let DA/(X) denote the based Z/2-space
QIWDS.Cpy(G) -

Corollary 6.2.2. There is a homotopy equivalence of based (unequiv-
ariant) spaces

DAM(X) S AM(X).

Proof. A model for A%(X) is given by Q|hS.Cpu(G)| (cf. [1, 1.8(3)]).
The result is therefore a consequence of 4.3.1. O

6.3. Comparison with the involution of [4]. We now discuss with-
out details how the Z/2-space DA(X) defined above relates to one of
the descriptions of the ‘canonical involution’ on A(X) which was given
in [4].

Consider the category hDC"(M) whose objects are triples (Y, Z, u)
such that

e Y is weak equivalent to a k-fold wedge of S%,, for some (unspeci-
fied) non-negative integer k.

e 7 is weak equivalent to a k-fold wedge of S%,.,, and

o u: Y ANZ — S2%is a duality map.

One defines a morphism so that hDC" (M) C hD,,5,Cre(M) is a full
subcategory.

When M is the realization of a simplicial group, the involution on
hDC" (M) is defined by (A, B,u) — (B, A,'u). The suspension functor

KDC (M) 225 hDC™ (M)
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given by (A, B,u) — (XA, XB, YY) is therefore equivariant.
There is also a based equivariant map

|hDC" (M)| = Q|hD2.5.Cra (M)

which is induced by inclusion of the ‘l-skeleton’ (cf. [5, p. 329]). The
latter is compatible with suspension ¥%!, and therefore defines upon
passage to limits an equivariant map

lim| ADC" (M)| — QhDS.Cpa(M))|

The source of this last map has the structure of a topological monoid
whose multiplication is induced by the categorical sum operation. The
involution of [4] was defined by taking the induced involution on the
group completion

lirranB|hD(C” (M)].

It is known that A(X) (with M = realization of the Kan loop group of
the total singular complex of X) is homotopy equivalent to the latter
by means of the left forgetful functor (cf. [4, 1.16]). In particular, on
homotopy groups in positive degrees, our involution agrees with the
one of [op. cit.].

7. DUALITY ON THE PROJECTIVE LINE

The aim of this section is to do for the projective line category Py (G)
of [1] what was done above for the category Cr(M).

We begin by recalling the definition of the projective line. We next
define duality for objects of the projective line, and following that, we
consider the case of filtered objects. We conclude the section with the
analogue of 4.3.1.

7.1. The projective line revisited. Let N_ denote the monoid of
negative natural numbers (including 0) with generator ¢!, and let N,
denote the monoid of positive natural numbers with generator ¢. In
the sequel, we will be using the identification

N, ~ N.°

which is induced by ¢ — (¢1)°P.

Let G be the realization of a simplicial group G.. If M. denotes
the simplicial monoid G.xN_ and M = |M.|, then M = GxN_, and
M°P = GxN;.

If U € Cy(GxN;) is an object, we may associate to it its telescope
U(t™") € Cr4(GXZ), given by taking the categorical colimit of the Z-
indexed sequence

t t t
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where t: U — U denotes the translation by ¢ map. Observe that the in-
clusion U C U(t™1) is GxN, -equivariant. If ¢ acts by homeomorphism,
then the inclusion is also an isomorphism.

Similarly, an object V' € Cp(G xN_) has a telescope V (t) € Cy(GXZ)
given by taking the colimit of the sequence

Lhvhve .
Let P(G) be the category whose objects are diagrams
Y Y Y,

in which Y_ € Cy(GxN_), Y € C;y(GxZ) and Y, € C;y(GxNy ), and
where the maps Y_ — Y and Y, — Y are required to be based and
equivariant (where we restrict the action of GXZ to its submonoids
GxN.). Moreover, the induced maps of telescopes

Y ) =Yt =Y  and Vit =Yt =2y

are required to be both cofibrations and weak equivalences of Cyy (G X Z).

We allow ourselves the liberty of specifying the object as the diagram
Y. =Y « Y, as the triple (Y_,Y,Y,), or as the corresponding lower
case letter y. The terms Y, and Y are called the components of the
object.

A morphism (Y_,Y,Y,) — (Z4,Z,Z;) of Py(G) consists of mor-
phisms Y. =+ 7 |Y — Z and Y, — Z, in such a way that the evident
diagram is commutative. A cofibration is defined to be a morphism
consisting of a triple of cofibrations with the additional property that
the induced maps

Y Uy () Z (t)—>Z and Y Uy_@-1) Z+(t_1) — Z

are cofibrations. A weak equivalence is defined to be a morphism such
that each of its components is a weak homotopy equivalence of under-
lying spaces. The above conventions equip Py(G) with the structure of
a category with cofibrations and weak equivalences.

7.2. Definition of duality in the projective line. Consider a pair
of objects y = (Y_,Y,)Y,) and z = (Z_, Z, Z) of Py(G) equipped with
a triple u = (u_, uz,uy), the latter consisting of

e an m-pairing u_: Y_ A Z, — Sf N,

e an m-pairing uz: Y A Z — S§, ;, and an

e m-pairing uy: Yy AZ_ — Sgly, -
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These data are required to be compatible in the sense that the diagrams

Y_ANZy-SsYAZ and YiANZ_ S5y AZ

m - m C
SGXN_ —>ng2 SGXN+ —_— Z}an
are required to commute. We specify these data as a triple (y, z, u).

Definition 7.2.1. Given such a triple (y, z,u), one says that u is a
duality map (more precisely, m-duality map) for y and z if each of the
pairings u_, uz and uy is a duality map.

The following is obtained by applying 1.3.4 to each of the components
of y. We omit the details.

Lemma 7.2.2. Ify is an object of Py(G), then there exists an object
z and an m-duality map v = (u_,uz,uy) for y and z, provided that m
is sufficiently large. L

The next step is to consider filtered duality in the context of the
projective line. Let y and z denote filtered objects of Py(G) of length
n. By a filtered duality (more precisely, filtered m-duality) for y and z,
we mean a compatible pairing u = (u—, uz, u4) in which

o u_: (Y_)u A(Z1)n — SZ,n_ is a filtered duality for Y_ and Z,,

o ugz: Y, NZ, — 5S¢,z is a filtered duality for ¥ and Z, and

o uy: (Yi)uA(Z-)n — Sliyn, is a filtered duality for Y, and Z_.

The following is obtained by applying 2.2.4 to the components of a
filtered object y of the projective line (we again omit the details).

Lemma 7.2.3. Let m be large. Given a filtered object y of length n of
Py(G), there exists another filtered object z of length n together with a
filtered m-duality u for y and z. ]

Definition 7.2.4. For integers m,n > 0, let hD,,,S,,P,4(G) denote the
category whose objects are specified by triples

(y7 Z’ u) ’
where y and z are objects of hS,Py(G) and u = (u_, uz,u,) denotes a
filtered m-duality for y and z.
A morphism
(y,2,u) = (¢, 2, u)
is given by morphisms y — ¥’ and 2’ — z of hS.Py(G) which are
compatible with the duality data in the sense that they give rise to
a morphism (Y_,Z,,u_) — (Y!,Z" ,u") (of hD,,S.Cry(GXN_)), a
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morphism (Y, Z,uz) — (Y',Z',u},) and a morphism (Y,,Z_,u;) —
(Y], Z ,u).
As n varies, we obtain a simplicial category
hDyS.Pu(G)

by defining the face and degeneracy functors as follows: if (y, z,u) de-
notes an object in hD,,S,P(G), then s;(y, z,u) = (si(y), sn—i(2),u).
Similarly, d;(y, z,u) is given by (di(y),dn—i(2),d;(u)) where if u =
(u_,uz,u), then d;(u) denotes (d;(u_),d;(uz), d;(uy)), where d;(u_),
etc., is defined above in 4.2.

7.3. Dualization. As in §5, there is a (anti-simplicial, contravariant)
dualization functor

WD SPu(G) 5 hD,SPu(G)
which is given by the operation
W,2u) = (Y '),
where ‘u = (*uy,tug,'u_).

Taking realization (using the discussion of 5.2), we obtain an invo-
lution T% on |hD,,S.Pu(Q).

t

7.4. Stabilization. As in 3.1, we have a suspension functor

WD SPu(G) 225 WDy s eS.Pu(G)

which is defined by (y, z,u) — (ZFy, X2, X¥T4u). We also have a left
forgetful functor

hDmSPu(G) 25 hSPu(G)

defined by (y, z,u) — y. The latter is compatible with suspension. We
therefore obtain an induced functor on colimits

(7.4.1) hDS.Pu(G) 25 lim h&.B(G).
(%)

where the source hDS.Py(G) denotes the colimit of the hD,,,S.Py(G)
taken with respect to the indexing sequence defined by X1

The following is the analogue of 4.3.1 for the projective line. Its
proof follows from 3.2.1. We omit the details.

Theorem 7.4.2. The functor (7.4.1) induces a homotopy equivalence
(of unequivariant spaces) on realizations. L]

Since the involution 7% on |hD,,8.P(G)| is compatible the suspen-
sion map X1, it induces an involution on |ADS.Py(G)|. The involution
on the latter will also be denoted by T¢.
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8. THE CANONICAL DIAGRAM

8.1. Let L denote one of the monoids N_, Z or N, . In [1], we defined
a category with cofibrations and weak equivalences Dy;(G'xL) which
contains Py, (G) as a full subcategory. It was subsequently shown that
a suitably defined forgetful functor

Dfd(GXL) — Cfd(GXL)

induces a homotopy equivalence |hS.Dyy(Gx L)| = |hS.Csa(Gx L)|. The
idea of introducing this category was to obtain a commutative diagram
of based spaces

hS.Pa(G)| —— [hSDy(GxN, )|

| |

|hS.Dg(GxN_)| —— |hS.Dyy(GXZ)|

which, after looping once becomes homotopy cartesian. The unlooped
diagram fails to be homotopy cartesian by a discrete set in the following
sense: the universal map

|hS.Pra(G)| = Pa

is a homotopy equivalence onto the basepoint component of the group-
like H-space Pg which is defined to be the homotopy pullback of the
diagram given by deleting the initial vertex from the above square. The
group of path components of Pg is isomorphic to the negative K-group
K_1(Z]m(G))]), so translation by the H-space multiplication gives rise
to a homotopy equivalence

|hS.Pu(G)|x K_1(Z]mo(G)]) = Pg -

We now briefly recall the definition of Djy(G'xL). First suppose that
L = N_. An object of Dy;(GxN_) is specified by a triple (Y_,Y,Y,),
as in P (@), the only difference now being that we do not require that
the induced cofibration Y, (t™') »— Y to be a weak equivalence (al-
though we still require the cofibration Y (¢) — Y to be a weak equiv-
alence). Morphisms and cofibrations of Dy (GxN_) are defined in the
same way that we defined them for Py;(G). A morphism (Y_,Y,Y,) —
(Z_,Z,7Z,) is a weak equivalence if (and only if) the map Y_ — Z_ is
a weak homotopy equivalence. We have the forgetful functor

Dfd(GXN_) — (Cfd(GXN_)

defined by (Y_,Y,Y,) — Y_ .
The category Dy, (G xN, ) is defined similarly, i.e., an object is spec-
ified by a triple (Y_,Y,Y,), where this time we only require the map
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Y. (t7}) = Y to be a weak equivalence. The forgetful functor in this
case is defined by (Y_,Y)Y,) — Y,.

Lastly, the category Dy (G xZ) is defined so that its objects are spec-
ified by diagrams Y_ — Y <« Y, with no condition imposed on the
induced maps Y_(t) - Y and Y, (t7') — Y (except that they be cofi-
brations). A map (Y_,Y,Y,) = (Z_,Z,Z,) is a weak equivalence if
(and only if) Y — Z is a weak equivalence. The forgetful functor is
defined by (Y_,Y,Y,) — Y.

Lemma 8.1.1 ([op. cit., 4.10]). Let L be N_, Z or Ny. Then the for-
getful functor induces a homotopy equivalence of unequivariant spaces

|hS.Dpy(GxL)| = |hS.Cra(GXL)|.

8.2.  We now define a version of the simplicial category hS.Dy(G'x L)
which incorporates duality data.

Definition 8.2.1. With L =N_|Z,N,, we let
hD;, 8D (G X L)

denote the simplicial category which is constructed in the same way
as hD,,S.P(G), with the exception that objects (y, z,u) are now de-
fined so that y is an object of hS.Dy(G'XL), and z is an object of
hS&.Dyy (G < L°P).

There is again a suspension functor

WD S.D(GX L) 225 WDy eSDp(GX L),

so we may take the colimit with respect £%!. Denote the resulting sim-
plicial category by hDS.Dy (G x L). It is equipped with a contravariant,
anti-simplicial dualization functor

WDSDu(GxL) 25 hDSDy(Gx L)

which is defined by the same formula was used to define the dualization
functor T¢ on hDS.Py(G). It therefore induces a dualization map

IBDS.Dy(GxL)| ™25 |hDSDu(Gx L)),

which is an involution if L = Z.
From the construction, we have

Lemma 8.2.2. The diagram of based spaces induced by the inclusions

|]’LD8.]P}d(G) | —_— |hD8.]D)fd (G X N_|_ ) |

l l

|hDS.]D)fd(GX N_ ) | — |hDS.Dfd (G X Z) |
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18 commutative. [l

Remark 8.2.3. Let Pg be the homotopy pullback of the diagram
‘hDS.Dfd(GXN,N — ‘hDS.Dfd(GXZ)‘ “— |hDS.]D)fd(GXN+)|
Then the lemma shows that there is a preferred map
|WDS.Py(G)| — Pe -
We can equip Pg with an involution as follows: a point in Pg consists of
a triple (a, b, A) in which a € |hDS.Dy(GXN_)|, b € |hDSEDy(GxN, )|
and A: [0,1] = |hDS.Dy(GXZ)| is a path from the image of a to the
image of b. In terms of this description the involution on Pg is given
by
(a,b,\) — (T(b),T(a),\"),

where T in each case denotes the appropriate dualization map and \*
is the path given by \*(¢) = TA(1—1).

With respect to this involution, the preferred map |hDS.Py(G)| —
Pq is equivariant.

We now compare hDS.Dy (G x L) with hDS.Cyy(GxL).

Definition 8.2.4. A map f: A — B of based Z/2-spaces is said to be
an equivariant weak equivalence if its underlying map of unequivariant
spaces is a weak homotopy equivalence. More generally, based Z/2-
spaces A and B are said to be equivariantly weak equivalent if there
exists a finite chain of morphisms from A to B, such that each such
morphism is an equivariant weak equivalence. In this instance we write

A ’iz/QB.

Lemma 8.2.5. For L = N_ N, ,Z, the forgetful functor induces an
equivariant weak equivalence of Z/2-spaces

IRDSDy(GxL)| = |hDS.Cpa(GXL))|.

Moreover, the forgetful functor is compatible with the dualization map
TGxL .

Proof. For the first part, we give the argument when I = N_ and leave
the remaining cases to the reader. The forgetful functor in this case,
call it ¢_, is induced by (y, z,u) — (Y-, Z4, uy).

Define a functor

g: hDS.Cpy(GXN_) = hDS.Dyy (GxN_)

by (Y-, Zy,uy) = (y, 2,u), where

o y:=(Y_,Y_(t),%), and z = (x,Z,(t"!),Z,), where Y_ C Y_(1),

and Z, C Z,(t7!) are given by the inclusions.
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e The filtered duality map v = (u_, uz,uy) is defined so that u_ is
trivial and

ug: Y_(O)ANZ(t7Y) — SE,
is the map which u, induces on telescopes.

It follows that there is a chain of equivalences of exact functors from
¢_og and go ¢_ to the identity. Consequently, ¢_ induces an equi-
variant weak equivalence.

The forgetful functor ¢, : ADS.Dy(GxN;y) — ADS.Cpy(GxN;) is
given by (y, z,u) — (Y,, Z_,u,). By construction, we have

TGXN_ o ¢7 — ¢+ OTGXN_ ]

Similarly, the forgetful map ¢ is induced by (y, z,u) — (Y, Z, uz) and
is equivariant with respect to T9*Z (i.e., ¢70T*% = T *Zogy). Hence,
the forgetful functors are compatible with the stabilization maps. [

9. AUGMENTATION

9.1. We shall continue to let L denote either N_, Z or N, . In [1, 7.1]
we introduced the augmentation functor e: Dy (GXx L) — Cpy(G) given
by

(Y—a Ya Y+) = Y/Z )
where Y/Z means the orbit space with respect to the action of Z.

This construction extends to a functor A" DSy, (G x L) — hDS.Cyy(G),
defined by

(v, z,u) = (e(Y),e(Z),€e(w)),
where
e(u): e(Y)Ae(Z) = 55
is the filtered duality map induced by u by means of taking orbits under

the Z xZ-action.
We will denote this functor by €7, for L = N_,Z,N,. Then we have

TGXL

€r0op O = TCo¢.

where T¢, TS*E are the dualization functors. Similar remarks apply to
define an augmentation functor e: h"DS.Py(G) — hDS.Cpy(G) which is
compatible with the dualization functors.
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9.2. The splitting defined by augmentation. For L = N_,Z or
N_|_, let
\hDS.Dy(GxL)|

denote the homotopy fiber of €;,: |hDS.Dy(GxL)| — |hDS.Cpy(G)].
Similarly, we let

|\WDS.Pr(Q)|°

denote the homotopy fiber of the augmentation map e: |hDS.Py,(G)| —
|hDS.Cry(G).

Lemma 9.2.1. There is an Z/2-equivariant weak equivalence
\WDS.Dyy(GXZ)| ~z/0 |WRDSDy(GXZ)|€ x |hDS.Dyy(G)|
Proof. There is an equivariant map
o: |hDS.Dy(G)| — |hWDSDy (G x Z)|

which is induced by the operation U — (UXZ)/(xxZ) (“extension
of scalars”). This map, followed by augmentation, is induced up to
isomorphism by the forgetful functor Dy, (G) — Cp(G). Consequently,
o is an (unequivariant) weak equivalence.

Let

ic: |hDSEDy(GXZ)|* — |hDSE.Dyy(GXZ)|

denote the structure map of the homotopy fiber of the augmentation
map. We would like to use the map

@: |WDED(GXZ)|**> = |[hDS.Dy(GXZ)|

induced by the categorical sum operation to add i and o. The sum of
these maps is automatically a weak homotopy equivalence. However,
the categorical sum is only equivariant up to unique isomorphism.

To get around this difficulty, we introduce a new simplicial category
with involution hDS8. Dy, (G xZ), whose objects consist of triples (a, b, 2)
in which a and b are objects of h"DS8.ID; (G xZ) having the same simpli-
cial degree and z is a representative of the sum of a and b. Define an
involution on this simplicial category by T'(a, b, z) = (T'(a), T'(b), T(z2)).
The forgetful functor hDE.Dyy(GXZ)y — hDS.Dyy(GXZ)|*? defined by
(a,b,z) — (a,b) is a degreewise equivalence of categories; it is also
involution preserving if we give the cartesian product the involution
defined by T'(a,b) = (T'(a),T(b)). We also have an involution preserv-
ing functor

Do hDS.Dfd(GXZ)Q — hDS.]D)fd (GXZ)

given by (a, b, z) — z.
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Let Z denote the homotopy pullback of the diagram of Z/2-spaces
|WDS. Dy (GXZ)|*x |hDS. Dy (G)|

l(ie#f )

IWDSDpa(GX )| — |WDSDy(GXZ)| x |WDS.Dy (GXZ)|

Then the map Z — |hDS.Dy(GXZ)|*x|hDS.Dy(G)| is an equivari-
ant weak equivalence. We also have an equivariant weak equivalence
defined by the composite

7 — |hDEDyu(GXZ)y| B |hDSEDy(GXZ)| .

Assembling the last two equivariant weak equivalences completes the
proof. O

10. PROOF OF THE MAIN THEOREM

10.1. The diagram of 8.2.2 is compatible with augmentation, and we
therefore obtain a commutative diagram of homotopy fibers

(10.1.1) |hDSP(G) |« —— |hDS.Dy(GxN, )¢

| l

|hDS8.Dyy(GXN_)|* —— |hDS.Dyy (GXZ)|*
such that the induced map
\WDS.Pu(G)|© —  Pg

is a weak homotopy equivalence onto the connected component of the

basepoint, where P¢; is given by taking the homotopy pullback of the

diagram obtained by deleting the initial vertex from the above square.
Moreover, the maps

PE — |hDSD(GXNL)[¢ and  P5 — |hDSDy(GXN, )¢

are known to be null homotopic: this is a direct consequence of [1,
Lem. 7.6].

10.2. Digression. Suppose that A, B and Z are connected, based
spaces. Assume that Z is equipped with a based involution 7'. Let
1: A— Z and ¢: A — B be based maps such that ¢ is a homeomor-
phism. Define a map j: B — Z by
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Define an involution on Ax B, also denoted T, by the rule T'(a,b) :=
(¢71(b), #(a)). Suppose that we are given a based Z/2-space and an
equivariant map P — AxB. Assume further that the diagram

P—— B

L

1

is homotopy cartesian.

Lemma 10.2.1. In addition to the assumptions above, suppose that
the map P — A is null homotopic (unequivariantly). Then there is an
equivariant weak equivalence

QZ ~z/9 PxQ(AxB).

Proof. There is a homotopy cartesian square of Z/2-spaces
P —— AxB

L

J —— IXJ
A

where the bottom map is the diagonal and the upper map is the evident
one. The homotopy fiber of A is identified with 2Z. Consequently we

have a homotopy fiber sequence of Z /2-spaces
U2 - P — AxB.

By hypothesis, the map P — A is null homotopic. This implies that the
equivariant map P — AXB is equivariantly null homotopic. A choice
of equivariant null homotopy together with the above homotopy fiber
sequence (shifted once to the left) then gives the desired splitting. [

We will be applying 10.2.1 to the homotopy cartesian square
P ——— |WDS.Dy (GxN, )|

l |

‘hDS.Dfd(GXNf ) ‘6 — ‘hDS.Dfd(GXZ) ‘6 .

The homeomorphism which switches the lower left hand and upper
right hand vertices is given by the dualization maps.
Consequently, if we apply 10.2.1, we obtain a splitting of Z/2-spaces.

(10.2.1)
Q|hDSED(GX L) | =g PG x Q(IWDEDy(GxN_)[x [hDE.Dyy(Gx Ny )[°) .
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Recall that the Z/2-space DA/(X x S?) is equivariantly weak equiv-
alent to Q|ADS.Dyy(GXZ)|, where G denotes the realization of the Kan

loop group of the total singular complex of X.
Notation. As in the proof of [op. cit., 7.9], we define the nil-terms
DN_A"(X) := Q|hDS.Dy(GxN_)| and
DN, A"(X) := QIhDS.Dyy (G xN, )|
Give the product
|WDS.Dyy(GXN_)|* x |hDS.IDy(GxN, )|

the Z/2-action defined by (z,y) — (T(y),T(x)), where T denotes the
dualization map. Then

DN_AM(X)xDN,AM(X) = Q(|hDSE.Dyy(GxN_)|*x |[hDS.Dyu(Gx Ny )[)
has the structure of a based Z/2-space.

Corollary 10.2.3. There is an equivariant weak equivalence of Z/2-
spaces

DAM(X xSY) =~y DAM(X) x PE x DN_AM(X) x DN, A"(X)

where, in particular, the tnvolution on the right side acts so as to switch
the nil-terms.

Proof. By 10.2.1, we have an equivariant weak equivalence
QIhDSDy(GXZ)|* ~z/2 Pg x DN_AM(X) x DN, AM(X).

Take the cartesian product of this with DA/(X), and use the equivari-
ant weak equivalence of 9.2.1

IWDSE.Dya(GXZ)| ~y o |WDED(GXZ)| x |hDED(G)] .
O

10.3. Using 10.2.3, we see that to complete the proof of the equi-
variant fundamental theorem, we must determine the equivariant weak
homotopy type of P¢,. This is accomplished by following the statement:

Proposition 10.3.1. There is an equivariant weak equivalence
DAY (X) )0 QP
In particular, P& is an equivariant non-connective delooping of DA(X).

Using Proposition 10.3.1 and Corollary 10.2.3, we immediately ob-
tain the main theorem:
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Theorem 10.3.2. There is an equivariant weak equivalence

DA(X xSY) =~y DAP(X)xBDAM(X)xDN_AM(X)xDN, A*(X),
such that QBDA(X) is equivariantly weak equivalent to DAM(X).
The action of ZL/2 on the splitting permutes the nil-terms.

10.4. Thus it remains to prove 10.3.1. Recall that the equivariant
map

\WDS.Pu(G)|© —  Pg
is a weak equivalence onto the connected component of the basepoint
of Pg. Consequently, Proposition 10.3.1 is equivalent to the statement

Proposition 10.4.1. There is an equivariant weak equivalence
DAX) =~z QWDSFu(G)|°.

The proof of 10.4.1 will require some preparation.

10.5. Global sections (unequivariant). Recall from [1, 5.1] that
the global sections functor

I': P(G) — C(G)
is defined by
(Y,, Y, Y+) — CY_ Uy Y UY+ CY+ s

where CY_ denotes the cone on Y_. It was shown in [1, Lem. 5.2] that
I maps finitely dominated objects to stably finitely dominated objects.
Consequently, I' yields a map

T: |hSPu(G)| — |hS.Cya(G)|.

Since the suspension functor can be iterated, the map induced by in-
clusion |hS.Cy(G)| = |hS.Cyqa(G)| is a homotopy equivalence (cf. [1,
Lem. 1.8(2)].

Lemma 10.5.1. The composite map
|hS.Pu(G) [ %5 |hS.Pu(G)| = [hS.Cpa(G))|

15 a homotopy equivalence, where i. denotes the structure map for the
homotopy fiber of the augmentation map.

Proof. By [1, Cor. 7.6], there is a homotopy equivalence
PY_1 8 to: |hE.Cu(Q)| = |hS.Pu(G)|
such that the composite

hS.Cu(G)] "2 |hSPu(G) [ 5 |hS.Pu(G)| 5 |hS.Cya(G)]
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is homotopic to the map induced by the suspension functor (cf. the
discussion prior to [1, Cor. 6.8]). But the suspension functor induces a
weak equivalence [5, 1.6.2]. The result follows. O

10.6. Global sections (equivariant). Define an involution preserv-
ing functor
I'p: hDS.IPfd(G) — hDS.(Csfd(G)
by
(Y, z,u) = (I'(y),T'(2), u) .
Here, y = (Y_,Y,Y,), z = (Z,,Z,Z_) and u denotes filtered duality
pairing data. The map v’ is induced by wu.

With respect to the left forgetful functor, I'p corresponds to T.
Hence, using 7.4.2 we obtain

Corollary 10.6.1. The composite
IWDSPu(G)| 25 |hDEP(G)| 25 [hDS.Cya(G))|

1s an equivariant weak equivalence.

Proof of Proposition 10.4.1. By 10.6.1 and the discussion prior to 10.5.1,
we have equivariant weak equivalences

IWDS.By(G) | 2 |hDS.Cypa(G)| & [hDS.Cu(G)| .

Taking loop spaces, we obtain an equivariant weak equivalence
QEDSE.Py(G)[ 2z QEDS.Cy(G)| = DA(X).
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