(C) Springer-Verlag 1992

A functional relation in stable knot theory

John R. Klein
Universität Gesamthochschule Siegen, Fachbereich Mathematik, Hölderlinstrasse 3, W-5900 Siegen, Federal Republic of Germany

Received October 15, 1990; in revised form August 1, 1991

Introduction

Let $V^{n+1} \subset S^{n+2}$ be a Seifert surface for a knot $K: S^{n} \subset S^{n+2}$, and let C denote the exterior of V. Pushing V into C along the two different unit normal frames defines a pair of maps $p_{+}, p_{-}: V \rightarrow C$. It is an easy consequence of the Mayer-Vietoris sequence of the triple $\left(S^{n+2}, V, C\right)$ that $p_{+*}-p_{-*}: H_{*}(V) \rightarrow H_{*}(C)$ is an isomorphism. Let $\theta: V \wedge V \rightarrow S^{n+1}$ be the homotopy Seifert pairing of $V \subset S^{n+2}$, which is defined to be the composite of $\operatorname{id}_{V} \wedge p_{+}: V \wedge V \rightarrow V \wedge C$ followed by the canonical SpanierWhitehead duality map $d: V \wedge C \rightarrow S^{n+1}$. The map θ is the homotopy theoretic version of the Seifert form. Farber proves that if V is r-connected, with $r \geqq(n+1) / 3$ and $n \geqq 5$, then the isotopy class of $V \subset S^{n+2}$ is determined by the "isometry class" of $\theta[\mathrm{F}]$.

For example, if $S^{n} \subset S^{n+2}$ is a fibred knot (i.e., the exterior fibres smoothly over the circle), then its fibre is a canonical Seifert surface, and there is consequently a canonical homotopy Seifert pairing for it. Hence, Farber's theorem is a complete classification of fibred n-knots whose fibres are $(n+1) / 3$-connected with $n \geqq 5$. This result was later extended to one dimension better ($3 r \geqq n$) by Richter [R$]$. We shall say that V is stable if the condition $3 r \geqq n$ holds.

It is the purpose of this paper to establish a formula expressing the homotopy class of the inclusion $S^{n} C V$ in terms of the homotopy Seifert pairing of stable Seifert surfaces (Theorem 3.1). The same result was obtained by Richter using a different argument involving the addition/composition formulae for generalized Hopf invariants (in fact, Richter appealed to these formulae in his homotopy theoretic proof of Farber's theorem). After deducing the main result, we state a general conjecture which we hope is valid outside of the stable range. We then interpret this conjecture in the metastable range: $4 r \geqq n+1$.

We remark that there is nothing sacred about the assumption that the boundary of V is a standard sphere; all of our results hold for homotopy spherical boundaries as well.

By Poincaré duality, if V is stable then the homology dimension of V is less than or equal to $2 r$. Consequently, the Freundenthal suspension theorem implies that V desuspends uniquely up to homotopy. In particular, V has a unique comultiplication (up to homotopy) which we shall denote by $+: V \rightarrow V \vee V$. It therefore makes sense to speak of the map $p_{+}-p_{-}: V \rightarrow C$.
Lemma 0.1. If $\operatorname{conn}(V)=r \geqq 1$, then $p_{+}-p_{-}$is a homotopy equivalence.
Proof. Since C is also simply connected, this is just the Whitehead theorem.

1 The flat product

We shall work entirely within the category of spaces which are the homotopy type of a CW complex.

For pointed spaces X and Y, let $X b Y$ be the homotopy fibre of the inclusion $X \vee Y \subset X \times Y$. Let $W_{X, Y}: X b Y \rightarrow X \vee Y$ denote the canonical map of the homotopy fibre into the total space. We will call $W_{X, Y}$ the universal Whitehead product. If $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$ are pointed maps, then the universal Whitehead product satisfies the naturality property

$$
\begin{equation*}
(f \vee g) \circ W_{X, Y}=W_{X^{\prime}, Y^{\prime}} \circ f b g \tag{1.1}
\end{equation*}
$$

where $f b g: X b Y \rightarrow X^{\prime} b Y^{\prime}$ is the obvious map. If $X=Y$, we let $w_{X}: X b X \rightarrow X$ denote the composition of the fold map $X \vee X \rightarrow X$ with $W_{X, X}$. We shall need the following fact, which is a special case of the Blakers-Massey excision theorem.
Lemma 1.2 (cf. [G]). There is a natural map $N_{X, Y}: X b Y \rightarrow \Omega(X \wedge Y)$ which is

$$
\min (\operatorname{conn}(X), \operatorname{conn}(Y))+\operatorname{conn}(X)+\operatorname{conn}(Y)+1
$$

connected.

2 The dual homotopy Seifert pairing

Let $\theta: V \wedge V \rightarrow S^{n+1}$ be the homotopy Seifert pairing associated with a Seifert surface $V \subset S^{n+2}$. Up to sign, the S-dual to θ is the map $\theta^{*}: S^{n+1} \rightarrow C \wedge C$ which may be described as follows (cf. [K-S]):

Let $D(V)=V_{+} \cup V_{-}$be the double of V. Consider the map $t: D(V) \rightarrow V \times C$ given by the rule

$$
t(v)=\left\{\begin{array}{lll}
\left(v, p_{+}(v)\right), & \text { if } & v \in V_{+}, \text {and } \\
\left(v, p_{-}(v)\right), & \text { if } & v \in V_{-} .
\end{array}\right.
$$

Let $D_{0}(V)$ be the space obtained from $D(V)$ by removing the top cell. Since the inclusion $V \vee C \subset V \times C$ is $(2 r+1)$-connected and since $D_{0}(V)$ has homology dimension $\leqq 2 r$ it follows from elementary obstruction theory that we can homotop t to a map $t_{1}: D(V) \rightarrow V \times C$ such that t_{1} maps $D_{0}(V)$ into $V \vee C$. Let $d^{*}: S^{n+1} \rightarrow V \wedge C$ denote the induced map of quotients,

$$
S^{n+1}=D(V) / D_{0}(V) \xrightarrow{t_{1}} V \times C / V \vee C=V \wedge C .
$$

(In fact, d^{*} is a Spanier-Whitehead duality [K-S, K].) Then $\theta^{*}: S^{n+1} \rightarrow C \wedge C$ is defined to be the composition $\left(p_{-} \wedge \mathrm{id}_{C}\right) \circ d^{*}$.

Let $\operatorname{adj}\left(d^{*}\right): S^{n} \rightarrow \Omega(V \wedge C), \operatorname{adj}\left(\theta^{*}\right): S^{n} \rightarrow \Omega(C \wedge C)$ be the adjoints to d^{*} and θ^{*}. By Lemma 1.2, there are maps (unique up to homotopy) $D: S^{n} \rightarrow V b C$ and $\Theta: S^{n} \rightarrow C b C$ such that $N_{X, Y^{\circ}} D \simeq \operatorname{adj}\left(d^{*}\right)$ and $N_{X, Y^{\circ}} \Theta \simeq \operatorname{adj}\left(\theta^{*}\right)$. Note by definition the relation which exists between D and Θ :

$$
\begin{equation*}
\Theta \simeq\left(p_{-} \mathrm{bid}_{c}\right) \circ D, \tag{2.1}
\end{equation*}
$$

where p_{-}bid $_{c}: V b C \rightarrow C b C$.

3 The inclusion of the boundary

Let $\alpha: S^{n} \subset V$ denote the inclusion of the boundary.
Theorem 3.1. If V is stable $(3 r \geqq n)$, then the following relation holds:

$$
\alpha \simeq\left(p_{+}-p_{-}\right)^{-1} \circ w_{C} \circ(-\Theta),
$$

where $\left(p_{+}-p_{-}\right)^{-1}$ is a homotopy inverse for $p_{+}-p_{-}$.
Proof. Identify $D(V)$ with the boundary of a tubular neighborhood of V in S^{n+2}. The attaching map for the top cell of $D(V)$ is then the composite

$$
S^{n} \xrightarrow{(1,-1)} S^{n} \vee S^{n} \xrightarrow{\alpha \vee \alpha} V \vee V \simeq D_{0}(V),
$$

where $(1,-1)$ is the map which is degree one on the first factor and degree minus one on the second factor. Note that

$$
\operatorname{pr}_{1} \circ(\alpha \vee \alpha) \circ(1,-1)=\alpha,
$$

where $\mathrm{pr}_{1}: V \vee V \rightarrow V$ is the projection onto the first factor.
By $[\mathrm{K}, 5.3], D(V)$ may be also identified with $(V \vee C) \cup_{e} D^{n+1}$, where $\varrho: S^{n} \rightarrow V \vee C$ is the composite

$$
S^{n} \xrightarrow{D} V b C \xrightarrow{W_{V, c}} V \vee C .
$$

We shall for the reader's convenience prove part of this assertion: Since S^{n+2} may be identified with the pushout of

$$
V \xrightarrow{\mathrm{id}_{V} \cup i d_{V}} D(V) \xrightarrow{p+\cup p_{-}} C,
$$

it follows that the pushout of

$$
\begin{equation*}
V \stackrel{\mathrm{id}_{V} \vee \mathrm{id}_{V}}{ } V \vee V \xrightarrow{p_{+} v_{p-}} C, \tag{*}
\end{equation*}
$$

is contractible, since $V \vee V$ may be identified with the punctured double, $D_{0}(V)$. Now a pair of maps $X \leftarrow A \rightarrow Y$ of 1 -connected spaces has contractible pushout iff A is homologically the wedge of X and Y by the Mayer-Vietoris sequence. In the above case, the connectivity hypothesis furthermore implies, in fact, that A is homotopically the wedge of X and Y.

To see this, consider the map $\sigma: V \vee V \rightarrow V \times C$ which on the first factor of the wedge is

$$
\left(\mathrm{id}_{V}, p_{+}\right): V \rightarrow V \times C
$$

and which on the second factor of the wedge is (id ${ }_{V}, p_{-}$). Since $V \vee V$ has homology dimension $2 r(r=\operatorname{conn}(V))$, and since the inclusion $V \vee C \subset V \times C$ is $(2 r+1)$ connected, it follows by obstruction theory that σ is homotopic to a map which factors through $V \vee C$, moreover this map is unique up to homotopy. Denote the
factorization by $\tau: V \vee V \rightarrow V \vee C$. Now τ upon taking homology yields the isomorphism which appears in the Mayer-Vietoris sequence associated to the diagram (*) above. Hence, τ is a homotopy equivalence by the Whitehead theorem.

Since $D(V)$ is obtained from $D_{0}(V)$ by attaching a top cell, it follows from the splitting argument that $D(V) \simeq(V \vee C) \cup D^{n+1}$. We leave it as an excercise to the reader to prove that the top cell is actually attached along the map $\varrho: S^{n} \rightarrow V \vee C$ given above. The basic idea is that ϱ followed by the inclusion $i ; V \vee C \subset V \times C$ has a canonical null homotopy, since the $i \circ \tau$ must extend to the double $D(V)$. Therefore ϱ factors as $W_{V, C^{\circ}}$?, and the reader must show that $?=D$.

We now use the comultiplication on $V \vee V$ to invert τ; this will lead to the formula for α : An easy calculation shows that the two splittings $D_{0}(V) \simeq V \vee V$ and $D_{0}(V) \simeq V \vee C$ are equated by the homotopy equivalence $A: V \vee C \rightarrow V \vee V$ (the homotopy inverse of τ) which is given by the 2×2 matrix of maps

$$
A=\left(\begin{array}{cc}
-\left(p_{+}-p_{-}\right)^{-1} \circ p_{-} & \left(p_{+}-p_{-}\right)^{-1} \\
\left(p_{+}-p_{-}\right)^{-1} \circ p_{+} & -\left(p_{+}-p_{-}\right)^{-1}
\end{array}\right)
$$

Under this identification ϱ and α are easily seen to satisfy the relation

$$
\mathrm{pr}_{1} \circ A \circ \varrho \simeq \alpha
$$

But $\mathrm{pr}_{1} \circ A$ is just the 1×2 matrix of maps

$$
\left(-\left(p_{+}-p_{-}\right)^{-1} \circ p_{-}\left(p_{+}-p_{-}\right)^{-1}\right)=\left(p_{+}-p_{-}\right)^{-1} \circ\left(-p_{-} \mathrm{id}_{C}\right)
$$

and hence,

$$
\alpha \simeq\left(p_{+}-p_{-}\right)^{-1} \circ\left(-p_{-} \mathrm{id}_{C}\right) \circ \varrho=\left(p_{+}-p_{-}\right)^{-1} \circ\left(-p_{-} \mathrm{id}_{C}\right) \circ W_{V, c} \circ D
$$

On the other hand, $\left(-p_{-} \mathrm{id}_{C}\right) \circ W_{V, C}=w_{C} \circ\left(\left(-p_{-}\right) b \mathrm{id}_{C}\right)$ by (1.1). Substituting this into the above, we get

$$
\left.\alpha \simeq\left(p_{+}-p_{-}\right)^{-1} \circ w_{C} \circ\left(\left(-p_{-}\right)\right) \operatorname{id} d_{C}\right) \circ D .
$$

Finally, we have by (2.1), $\Theta \simeq\left(p _b \mathrm{id}_{C}\right) \circ D$, and therefore,

$$
-\Theta \simeq\left(\left(-p_{-}\right) \operatorname{bid}_{c}\right) \circ D
$$

as the reader may easily check. This yields the desired relation,

$$
\alpha \simeq\left(p_{+}-p_{-}\right)^{-1} \circ w_{\mathrm{C}^{\circ}}(-\Theta)
$$

4 A conjecture

Suppose that K is a space and that a map $\phi: S^{n+1} \rightarrow K \wedge K$ is given. We say that f is a (dual) homotopy Seifert pairing for K if

$$
d:=\phi+(-1)^{n+1} \circ T \circ \phi
$$

is an S-duality, where $T: K \wedge K \rightarrow K \wedge K$ is the map which interchanges factors (cf. [F, 1.4]).

By a Ganea-Seifert triad (of dimension n) for K, we mean a triple $\left(q_{+}, q_{-}, \Theta\right)$ where,
(1) $q_{ \pm}: K \rightarrow K$ are maps;
(2) $\Theta: S^{n} \rightarrow K b K$ is a map such that $N_{K, K} \circ \Theta: S^{n} \rightarrow \Omega(K \wedge K)$ is adjoint to a homotopy Seifert pairing for K;
(3) with respect to the S-duality $d: S^{n+1} \rightarrow K \wedge K$ associated with (2), the S-dual of q_{-}is

$$
\operatorname{adj}\left(N_{K, K} \circ \Theta\right): S^{n+1} \rightarrow K \wedge K
$$

and the S-dual of q_{+}is

$$
(-1)^{n+1} T \circ \operatorname{adj}\left(N_{K, K} \circ \Theta\right),
$$

[i.e., $\left(q_{-} \wedge \mathrm{id}_{K}\right) \circ d \simeq \operatorname{adj}\left(N_{K, K} \circ \Theta\right)$, etc.].
There is also the notion of isometry of Ganea-Seifert triads - the definition of this we leave to the reader.

Lemma 4.1. If $V^{n+1} \subset S^{n+2}$ is a 1-connected Seifert surface having the structure of a co- H space, then there is a canonical Ganea-Seifert triad (of dimension n) up to isometry associated with V.

Proof. We set $K=V, q_{+}=\left(p_{+}-p_{-}\right)^{-1} \circ p_{+}$, and $q_{-}=\left(p_{+}-p_{-}\right)^{-1} \circ p_{-}$. We define $\Theta: S^{n} \rightarrow K b K$ as follows:

As in Theorem 3.1, identify the double $D(V)$ with the boundary of a tubular neighborhood of V and let $D_{0}(V) \simeq V \vee V$ be the punctured double, i.e. the space obtained from $D(V)$ by removing the top cell. Then $D_{0}(V)$ is a co- H space. Let C be the exterior of V. Then there is a canonical equivalence $D_{0}(V) \simeq V \vee C$ defined by co-adding the fold map $V \vee V \rightarrow V$ with the map $p_{+} \vee p_{-}: V \vee V \rightarrow C$. The attaching map $S^{n} \rightarrow D_{0}(V)$ for the top cell of $D(V)$ with respect to this equivalence factors as $W_{V, c} \circ D$, where $D: S^{n} \rightarrow V b C$ satisfies the condition that $N_{V, C} \circ D$ is adjoint to an S-duality [K, 5.3]. We then define $\Theta: S^{n} \rightarrow V b V$ to be the composition

$$
S^{n} \xrightarrow{D} V b C \xrightarrow{q-b\left(p_{+}-p_{-}\right)^{-1}} V b V .
$$

We now sketch a proof that the triple $\left(q_{+}, q_{-}, \Theta\right)$ has the desired properties. To prove (2), note that

$$
\begin{aligned}
N_{V, V} \circ \Theta & =N_{V, V} \circ q_{-} b\left(p_{+}-p_{-}\right)^{-1} \circ D \\
& \simeq \Omega\left(q_{-} \wedge\left(p_{+}-p_{-}\right)^{-1}\right) \circ N_{V, C} \circ D, \quad \text { by Lemma } 1.2
\end{aligned}
$$

Hence, by taking adjoints we infer that

$$
\begin{aligned}
\operatorname{adj}\left(N_{V, V} \circ \Theta\right) & \simeq\left(q_{-} \wedge\left(p_{+}-p_{-}\right)^{-1}\right) \circ N_{V, C} \circ D \\
& =\left(\left(p_{+}-p_{-}\right)^{-1} \wedge\left(p_{+}-p_{-}\right)^{-1}\right) \circ\left(p_{-} \wedge \mathrm{id}_{C}\right) \circ D \\
& =\left(\left(p_{+}-p_{-}\right)^{-1} \wedge\left(p_{+}-p_{-}\right)^{-1}\right) \circ \widetilde{\Theta},
\end{aligned}
$$

where $\widetilde{\Theta}:=\left(p_{-} \wedge \mathrm{id}_{c}\right) \circ D$ is the dual homotopy Seifert pairing of $V \subset S^{n+2}$ in the sense of Sect. 2. Since $\left(p_{+}-p_{-}\right)^{-1}$ is a homotopy equivalence, condition (2) will be satisfied if

$$
\widetilde{\Theta}+(-1)^{n+1} \circ T \circ \widetilde{\Theta}
$$

is an S-duality map. But this in fact follows from [F, 1.4] (or rather its S-dual version).

To prove (3), we may simplify things and identify V again with C using the equivalence $p_{+}-p_{-}$. Under this identification, the first part of (3) is equivalent to showing that

$$
\operatorname{adj}\left(N_{C, c^{\circ}} \Theta\right):=\operatorname{adj}\left(N_{C, c^{\circ}}\left(p_{-} \operatorname{bid}_{C}\right) \circ D\right)
$$

is S-dual to p_{-}(with respect to the duality map $d_{V, C}:=\operatorname{adj}\left(N_{V, C}{ }^{\circ} D\right): S^{n+1}$ $\rightarrow \Sigma V \wedge C$).

By naturality (1.2), this is the same as

$$
\operatorname{adj}\left(\Omega\left(p_{-} \wedge \mathrm{id}_{C}\right) \circ N_{V, C} \circ D\right)=\left(p_{-} \wedge \mathrm{id}_{C}\right) \circ d_{V, C},
$$

and hence the first part of (3) is established. The last part of (3) follows by a similar argument using the fact that p_{+}and p_{-}satisfy the equation

$$
(-1)^{n+1} \circ T \circ\left(p_{-} \wedge \mathrm{id}_{c}\right) \circ d_{V, c} \simeq\left(p_{+} \wedge \mathrm{id}_{c}\right) \circ d_{V, C},
$$

(see [F, 1.4]).
We now propose the following conjecture:
Conjecture 4.2. (1) (Existence). If K is a 1 -connected co- H space and $S=\left(q_{+}, q_{-}, \Theta\right)$ is a Ganea-Seifert triad of dimension $n \geqq 5$ for K, then there is a Seifert surface $V^{n+1} \subset S^{n+2}$ with ∂V a homotopy sphere Σ^{n}, such that $V \simeq K$, and such that the Ganea-Seifert triad associated with V (cf. 4.1) is isometric to S.
(2) (Uniqueness). Let V^{n+1} and W^{n+1} be Seifert surfaces (with homotopy spherical boundaries) in the sphere S^{n+2}. Additionally, assume that V and W are 1 -connected and have the structure of a co- H space. Then V and W are isotopic in S^{n+2} if and only if their associated Ganea-Seifert triads are isometric.

We remark that this conjecture generalizes the statements of the theorems of Farber [F].

5 Interpretation of Conjecture 4.2 in the metastable range

It is our intention in this section to give the data of Sect. 4 a simpler description under a metastable type connectivity restriction.

If K is an r-connected co- H space, then we say that a Ganea-Seifert triad $S=\left(q_{+}, q_{-}, \Theta\right)$ of dimension n for K is metastable if $4 r \geqq n+1$. If the conditions of Conjecture 4.2(1) hold and if S is metastable, then Poincare duality implies that K has homology dimension $\leqq 3 r-1$. Consequently, by [G, 3.6], it follows that there is a space Y and a primitive equivalence of co- H spaces $\Sigma Y \simeq K$, i.e., K desuspends.

We now use the Hilton-Milnor decomposition of $K b K$ as an infinite wedge (see e.g. [G] for this computation):

$$
\left.K b K \simeq \Sigma\left(\left(\Sigma^{-1} K\right)^{\wedge 2} \vee 2\left(\Sigma^{-1} K\right)^{\wedge 3} \vee 3\left(\Sigma^{-1} K\right)^{\wedge 4} \vee \ldots \vee j\left(\Sigma^{-1} K\right)^{\wedge(j+1)} \vee \ldots\right)\right) .
$$

By obstruction theory, the inclusion of terms of smash order $\leqq 3$ is ($4 r+3$)connected. As $4 r \geqq n+1$ by hypothesis, we infer that $\Theta: S^{n} \rightarrow K b K$ is determined by a map

$$
\Theta^{\prime}: S^{n} \rightarrow \Sigma^{-1} K \wedge K \vee \Sigma^{-2} K \wedge K \wedge K \vee \Sigma^{-2} K \wedge K \wedge K
$$

By obstruction theory again, the inclusion

$$
\begin{aligned}
\Sigma^{-1} K & \wedge K \vee \Sigma^{-2} K \\
\wedge & \wedge
\end{aligned} \wedge K \vee \Sigma^{-2} K \wedge K \wedge K \wedge K \times \Sigma^{-2} K \wedge K \wedge K \times \Sigma^{-2} K \wedge K \wedge K
$$

is more than n-connected. Consequently, $\Theta: S^{n} \rightarrow K b K$ is determined by three maps

$$
\begin{gathered}
\Theta_{1}: S^{n} \rightarrow \Sigma^{-1} K \wedge K, \quad \Theta_{2}: S^{n} \rightarrow \Sigma^{-2} K \wedge K \wedge K, \quad \text { and } \\
\Theta_{3}: S^{n} \rightarrow \Sigma^{-2} K
\end{gathered} \wedge K \wedge K .
$$

Note that each of these maps is in the stable range. It can be shown that $\Sigma \Theta_{1}$ is the dual homotopy Seifert pairing. The other maps are possibly a "tri-linear" analogue of the homotopy Seifert pairing. It would be interesting to know what these maps mean geometrically. Is there a functional relationship between Θ_{2} and Θ_{3} ?

References

[F] Farber, M.S.: Isotopy types of knots of codimension two. Trans. Am. Math. Soc. 261, 185-205 (1980)
[G] Ganea, T.: Induced fibrations and cofibrations. Trans. Am. Math. Soc. 127, 442-459 (1967)
[K] Klein, J.: On the homotopy embeddability of complexes in Euclidean space. I. The weak thickening theorem (Preprint)
[K-S] Klein, J., Suciu, A.: Inequivalent knots with isometric homotopy Seifert pairings. Math. Ann. 289, 683-701 (1991)
[R] Richter, W.: Unpublished manuscript
[W] Wall, C.T.C.: Surgery on compact manifolds. New York: Academic Press 1970

