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Using equivariant methods,  we provide straightforward proofs of 

a result of Chachdlski and a result of Spivak about fibrations. 

INTRODUCTION 

Let h., denote a reduced homology theory on the category of based spaces and 
let h, denote the corresponding extension to an unreduced homology theory on 
the category of unbased spaces given by h , ( X )  = h,(X+),  where X+ denotes 
X with the addition of a disjoint basepoint. 

The following was proved by W. Chach61ski [2], using the elaborate machin- 
ery of 'cellular inequalities' developed by E. Dror Farjoun (see [3]): 

T h e o r e m  A. Suppose that  

F ~ E ~ B  

is a fibration, with B a connected, based space. Assume that 

h , ( F )  --~ h , ( E )  

is an isomorphism for all degrees , .  Then h , ( B )  = O. 

Chach61ski tells me that  Dror Farjoun has asked if a 'classical proof' of 
Theorem A exists. The first part of this paper provides such a proof. 

It is perhaps worth remarking here that if the fibration admits a section 
the result is trivial, since the natural map E U C F  -+ B is then a retraction, 
and the mapping cone E U CF has trivial homology. This gives a clue as to 
how the result is to be proved in the general case: in effect, we will show that 
a homological retraction still exists even when the fibration doesn't admit a 
section. 

The second result we shall be concerned with is crucial for establishing the 
existence of the Spivak normal fibration for Poincar~ duality spaces. It  is 
originally due to M. Spivak [5,4.3]. We state the reformulation of it given by 
W. Browder [1,I.4.3]. 
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T h e o r e m  B. Suppose that 

F ~ E ~ B  

is a fibration, where B is 1-connected. Suppose also that the Thorn isomorphism 
is satisfied, i.e., for some positive integer n >_ 2 there exists a class u E H"(p)  
in singular cohomology such that the induced homomorphism 

uA: H,(p) --> H , _ . ( B )  

given by cap product  with u is an isomorphism for all .. Then F is a homology 
(n - 1)-sphere. In particular, i f  F is 1-connected, then F ~- S "~-1. 

The Spivak-Browder proof of Theorem B was computational, making intri- 
cate use of the relative Serre spectral sequence. 

In contrast, our methods of proving Theorems A and B will be to convert 
the statements into questions involving spectra equipped with the action of a 
topological group. It  is well-known that a connected, based space B has the 
weak homotopy type of BG, where G denotes the geometric realization of the 
Kan loop group of its total singular complex. With respect to this identification, 
a fibration over B corresponds to the Borel construction on a space with G- 
action. This observation enables us to apply standard equivariant techniques. 

A version of Theorem B is also true without the 1-connected hypothesis on 
the base (cf. Ranieki [4,3.10]). In this instance, the Thorn isomorphism is to be 
formulated with twisted coefficients. The methods of this paper can be used 
to obtain the general case (see 4.2 below). However, we only present the proof 
in the case of a 1-connected base to economize on technicality. 

Acknowledgments. I would like to express my thanks to Wojciech Chach61ski 
for explaining to me his proof of Theorem A. I wish to thank Andrew Ranicki for 
expository improvements. Lastly, I am indebted to Bob Oliver in his function 
as editor. In particular, the proof of lemma 1.2(1) is due to him (my original 
argument was more complicated). 

Outline o/paper. §1 is preliminary. §2 contains the proof of Theorem A. §3 
contains the proof of Theorem B. §4 is an addendum which contains variants 
of Theorems A and B which we state without proof. 

1. PRELIMINARIES 

The spaces in this paper are to be given the compactly generated topology 
and products  are to be taken in the compactly generated sense. To insure that 
some of our constructions are homotopy invariant, we will also generally assume 
that (based) spaces are (based) CW complexes (when a construction leads us 
out of this class of spaces, we implicitly apply the functor X ~ [SinX[, i.e.. 
the geometric realization functor composed with the total singular functor). 

1.1. S p e c t r a  w i t h  G-ac t lon .  Let G. be a simplicial group. The geometric 
realization G :-- [G.[ of its underlying simplicial set is then a topological group. 

A pre-spectrum with G-action W is a collection of based (left) G-spaces W,~, 
n E {0, 1, ...}, and equivariant maps Z?Wn ~ W n + l  where G acts trivially on 
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the suspension coordinate  in the source. We say tha t  W is a spectrum with G- 
action when the adjoint  map W, ,  ~ OW,~+I is a weak homotopy equivalence 
(of underlying topological spaces). 

Given a pre-spect rum with G-action W ,  we can form its spectrification W ~ 
by taking W ~  to be the  homotopy colimit 

hocolim 12kW,,+k. 
J¢ 

This is a spect rum with G-action. 
Given a based G-space Y, there is an associated spect rum with G-action 

Y A W :  it is defined to be the spectrification of the pre-spcctrum with G- 
action whose n- th  space is Y A W , ,  with G-acting diagonally. 

If ~V is a pre-spect rum with G-action, its homotopy orbit spect rum W h a  is 
given by spectrifying the prc-spectrum with G-action whose n- th  space is the 
reduced Borel construct ion on W n ,  i.e., EG+ AG W n ,  where E G  denotes a free 
contractible G-space. 

By a map  of ( p r e - ) s p e c t r a / :  X ~ Y with G-action, we mean a collection 
of G-maps f,, : X,,  ~ Y,,  which is compatible with the s t ructure  maps.  

Given a (pre)-spect rum X, recall that  its homotopy groups 7rj(X) for j E Z 
are given by colim i+, ,(X,,) .  We say X that  r-connected if its homotopy groups 
vanish below degree r. We say that  X is bounded below if it is r -connected 
for some integer r.  If X is a spectrum with G-action, its homotopy groups 
are a left 7,[Tr0(G)]-module. The action of [g] e 7r0(G) on 7r,(X) is defined by 
applying hometopy groups to the multiplication by g map. 

Call a map  X ~ Y of (pre-)spectra (with or without G-action) a weak 
equivalence if the induced map on homotopy groups is an isomorphism in every 
degree. Note that  the canonical map from a pre-spectrum to its spectrification 
is a weak equivalence. 

We use the nota t ion S O for the sphere spectrum, whose n- th  space is Q(S '~) 
(where Q = ~°°27 °~, denotes the representing functor for stable homotopy).  
We also let hZ denote the Eilenberg-Mac Lane spectrum with n- th  space K ( Z ,  n) 
(the Eilenberg-Mac Lane space of type (T,, n)), 

The following lemma shows that  the homotopy orbit  construct ion on the cat- 
egory of pre-spect ra  with G-action is weak homotopy invariant. It is probably  
well-known. 

L e m m a  1.2. (1). I f  X --r Y is a weak equivalence of we-spectra with G- 
action, then the induced map of spectra  

XhG ~ YhG 

is a weak equivalence. 

(2). More generally, i f  X --~ Y is j-connected, then so is Xho --~ Yha .  

Proof. (1). If X and Y are both spectra  with G-action, then the result  is 
clear because a map  X -+ V is a weak equivalence in this case if and only 
if the maps X,,  --~ Y,~ are for every n _> O. Assume therefore tha t  X is a 
pre-spectrum with G-action. By functoriality, it  will suffice to show tha t  the  
map e x :  X --+ X $ given by including a pre-spectrum into its spectrif ication 
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induces a weak equivalence on homotopy orbits. In what follows below, we 
use the notation EG+ AC X to denote the pre-spectrum whose n-th term is 
EG+ Aa X ,  (which spectrifies to Xha). 

There is a map of pre-spectra 

EG+ A G X ]~ qx) (EG+ Aa X) u 

which is defined on n-th spaces to be the inclusion of the first term into the 
homotopy colimit of the chain of maps 

EG+ AG X~, ---+ f2(EG+ AG X~+t) --~ F22(EG+ AG X~,+2) --+ ... • 

The composite map of pre-spectra 

EG+ AG X id~a,Aa~x EG+ Aa X ~ ..2_% (EG+ Aa X) ~ 

coincides with the evident map from the pre-spectrum EG+ AG X into its 
spectrification, and is therefore a weak homotopy equivalence. In particular, 
the map 

EG+ A G X ,.idEa+Aaex) EG+ Aa X u 

induces an injection on homotopy groups in all degrees. 
We next claim that the composition 

EG+ Aa X u qx~ (EG+ ̂ v X) ~ 0dec+^o~x)1~ (EG+ Aa XU) ~ 

coincides with the spectrification map eEG+^ax~ up to homotopy. To see why, 
observe that there is an evident map 

EG+ AG hocp!im f2i+JX,+i+i --+ (EG+ Aa X~)~. 
SO 

Composing the latter with each of the 'axial' inclusions into the displayed 
double homotopy colimit (the maps given by setting i = 0 or j = 0) defines 
the two maps in question. A homotopy between these inclusions is defined by 
taking a suitable rotation. 

Therefore, the map idEG+ Aa ex also induces a surjection on homotopy 
groups in all degrees (since its spectrification (idEa+AG ex) ~ does). Thus, the 
map idEa+Aa ex is a weak equivalence, as was to be proved. 

(2). By the first part, we can assume that X and Y are spectra with G- 
action. It follows that the map of n-th spaces X ,  ~ Y,, is (j + n)-connected. 
Since the reduced Borel construction preserves connectivity, we infer that the 
map EG+ AG X ,  --~ EG+ AG Y ,  is also (j + n)-connected. It follows that 
XhG -'9' YhG is j-connected. [3 
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L e m m a  1.3. Let X be bounded below we-spec t rum with G-action and as- 
sume that G is connected. Furthermore, suppose that Xha  has trivial homo- 
topy groups. Then X has trivial homotopy groups. 

Proof. If X is bounded below, there exists an integer j such tha t  X is ( j  - 
1)-connected. By induction, it will be sufficient to prove tha t  X is also j -  
connected. We can by 1.2(1) assume without loss in generali ty that  X is also 
spectrum with G-action. 

The map  of based G-spaces 

G+ ~ S O 

is 1-connected, since G is connected. Hence, smashing with X,  it follows that  
the induced map of spect ra  with G-action 

G+AX-4 S°AX =X 

is ( j  + 1)-connected. The induced map of homotopy orbit  spec t ra  is identified 
with the natura l  map 

X ~ X a a ,  

so by 1.2(2), the la t te r  map is also (j  + 1)-connected. Consequently, X is 
j -connected.  [] 

The following is a part ia l  converse to 1.2(1). 

C o r o l l a r y  1.4. I f  G is connected, then a map X --+ Y of  bounded below pre- 
spectra with G-action which induces a weak equivalence on homotopy  orbits 
was also a weak equivalence to begin with. 

Proof. Let C denote the homotopy cofibre of the map  X -4 Y.  Then C is 
bounded below, and C h a  has trivial homotopy groups. Applying 1.3, we find 
that  C has trivial homotopy groups. Hence X -4 Y is a weak equivalence. [] 

1.5. F i b r a t i o n s .  Let B be a connected, based space. It is well known that  B 
is functorially weak homotopy equivalent to the classifying space B G  := E G / G  
where G = [G.[ is the realization of a sutiable simplicial group. Namely, one 
defines G as the Kan loop group of the total singular complex of B. For this 
reason, wc from now on assume that  B is identified with BG. 

The following lemma says that  in the homotopy category of spaces over BG,  
every fibration over B G  is isomorphic to a Borcl construction. 

L e m m a  1.6. Given a (Serre) fibration p: E -4 B with fibcr F = p - l ( , ) ,  there 
exists an unbased G-space F'  and a weak homotopy equivalence 

E -~ EG x a F' 

compatible with projection to B -- BG,  where the target denotes the unreduced 

Borel construction of  G acting on F'. Moreover, the induced map  F - ~  F'  is 
a weak homotopy  equivalence of  underlying spaces. 

Proof. Form the pullback of p along the universal G-fibration E G  -4 B G  = B.  
Let E* --+ E G  denote the resulting fibration. Then the fiber of the la t te r  over 
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the baaepoint  is F ,  and  since EG is contractible,  F --~ E* is a weak homotopy 
equivalence. Moreover E* comes equipped with the s t ructure  of a G-space, and 
the orbit  space E*/G is identified with E in a way such that  E*/G -~ E G / G  
coincides wi th  the project ion E --~ B. On the other hand, the  action of G 
on E* is free, and the  natura l  map  E*/G --~ EG x a  E* is a weak homotopy 
equivalence which commutes with project ion to BG. Hence we may define 
F '  :=  E*. I-1 

By means of 1.6, we may assume that  any fibration E -~  B is a Borel 
construct ion with B = BG. 

2. PROOF OF THEOREM A 

Let  
h.  : T o p .  -+ A b  

be a reduced homology theory on the category of based spaces. Then  h. will de- 
note the  corresponding unreduced homology theory on the category of unbased 
spaces. 

By the Brown representabi l i ty  theorem, there exists a spec t rum W such 
tha t  h . (Y)  = ~r,(W A Y) up to natura l  isomorphism. Using W we obta in  a 
functor h: T o p  ~ S p  from unbased spaces to  spectra  by taking Z ~-+ W A Z+. 
By taking homotopy groups, this recovers the  unreduced theory h . .  

Given a f ibration 
F-~4 E - ~  B 

satisfying the hypotheses  of Theorem A, we may assume by 1.6 tha t  B = BG, 
F is a G-space and E = EG x G F is a Borel construction. 

Let  W represent  h . .  Define a left G-action on the spec t rum h(F)  = W A F+ 
by let t ing G act  tr ivial ly on W and taking the  resulting diagonal action on the 
smash product .  

L e m m a  2.1.  Up to weak equivalence, h(E) is given by the homotopy orbit 
spectrum 

h(V)ho. 

Moreover, with respect to this identification, the map h(i ) :  h(F) -+ h(E) 
coincides with the natural map h(F) --+ h(F)hc from a spectrum with G- 
action to its homotopy orbit spectrum. 

Prool. 

h(E) = h(EG XG F) 

= W A (EG xG F)+ 

= w ^ (EG+ ^a  F+) 

-~ (W ^ F+)ho 

= h(F)ha 

The establishes the first  part .  The  second pa r t  is just  a short  d iagram chase. 

Proof of Theorem A. By 2.1, the map  

[2 

h(F) --~ h(E)  
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is identified up to homotopy with the natural  map 

h(F) --~ h(F)hG. 

By hypothesis,  it is a weak equivalence. Moreover, it  is G-equivariant, where 
the act ion on the ta rge t  is defined to be trivial. Let  us rename the target  
spec t rum by V.  Then the map  h(F) ~ V is a weak equivalence of spect ra  
with G-action,  and therefore 

h(F)he ~ VhG = B G + A V  = B + A V  "-" B+Ah(F) ,  

where the first equali ty uses the fact that G acts trivially on V. Wi th  respect 
to this  chain of equivalences, the weak equivalence h(F) ~ h(F)hv may be 
identified with the inclusion map 

h(F) -+ B+ A h ( f ) .  

Now, using the fact h(F) = W A F+, we see that  

B+Ah(F)---- B + A ( W  AF+)~- W A(B+AF+)= W A ( B x F ) +  = h ( B x F ) .  

We therefore have tha t  h(E) ~- h(B x F) and moreover, modulo this identifica- 
tion, the map h(F) ~ h(E) is given by applying h to the  inclusion F ~ B x F .  

Consequently, the hypotheses imply that the  map 

h( f )  ~ h(B x F) 

is a weak equivalence. Let , E F be a choice of basepoint.  Then the map  
* ~ B x • is a re t ract  of the inclusion F --+ B x F .  Hence h(*) -+ h(B) is also 
a weak equivalence. This  means that  the reduced homology of B,  i.e., ho(B),  
is trivial.  This  completes  the proof of Theorem A. 

3. PROOF OF THEOREM B 

In order to prove Theorem B, it will be helpful to reformulate the Thom 
isomorphism for fibrations equipped with a section. 

Let  F -~ E -~ B be  a fibration equipped with a scction s: B --~ E such 
that  the section is a cofibration. 

Define a diagonal  m a p  

A :  E/B --~ (E/B) ^ B+ 

by taking induced quotients on the map of pairs (E,  B) ~ (E  × B , B  × B) 
defined by c ~ (e ,p(e)) .  

Then  the cofibration sequence 

E O~ C(B) -~ E Uid C(E) ~ B Op C(E) 

shows that  ,F,(E/B) is weak equivalent to BOp C(E). Consequently, there is 
an isomorphism H'~(E U~ C(B)) ~ H"+I(B Op C(E)). 
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E x a m p l e  3.1.  Let F0 -+ E0 - ~  B be a fibration. Taking the fiberwise join 
with S °, we obta in  a fibration Z'F0 -4 E -~ B with section B -4 E. In this 
instance, we have a weak equivalence 

E / B  ~- BUpo C(Eo). 

The la t te r  is often called the 'Thorn complex'  of the fibration E0 -+ B. 

D e f i n i t i o n  3.2. Le t / : /*  be reduced singular cohomology. We say that  p has 
a Thorn class (of degree n), if it is equipped with a class u 6 fiI'~(E/B) such 
that  capping with u by means of the diagonal map A gives an isomorphism in 
singular homology 

un: [-I,(S/B) -~, [-I._n(B+) 

for all degrees *. 

Let fi/: T o p .  --~ S p  represent reduced singular homology, i.e., 

.ft(Y) = h(Z)  A Y 

where we recall tha t  h (Z )  denotes the Eilenberg-Mac Lane spect rum.  

L e m m a  3.3. Suppose that p has a Thorn class of degree n. Then there is a 
G-equivariant map 

f i (F)  ~ f~(S ~) 

where the tin'get has tile trivial G-action. Moreover, this map yields a weak 
equivalence upon taking homotopy orbits. 

Proof. Using the fact ~In(E/B) = [E/B, h(Z) , ] ,  we may represent  the Thorn 
class as a map  of spec t ra  

S O A E/B _5, S" A h ( Z ) .  

Smash this on the right with h (Z)  and then compose with the  multiplication 
map  # :  h (Z)  A2 --~ h (Z)  to give a map 

E / B  A h(Z)  ~ S O A E / B  A h(Z)  

Using the identification 
Fha 

we therefore have a map  

uAid) Sn A h(Z) A h(Z) idA!,) Sn A h(Z). 

= E / B  

FaG A h(Z) -+ S" A h(Z), 

or equivalently, by giving S"  A h (Z)  the trivial G-action,  an equivariant map 

Ill(F) = F A h(Z) -+ S n A h(Z) =/~rcs"). 
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Finally, applying the  homotopy orbit  construction yields a map  

E / B  A h(Z)  = ( F  A h(Z))hG --+ (S n A h(Z))hG = B+ A S"  A h ( Z ) .  

On homotopy groups, it is straightforward to check that  the la t ter  yields the  
cap product  

un: f I . ( E / B )  -~ /~,_,(B+).  

By assumption,  the la t ter  is an isomorphism for all . .  Consequently, the map  

/~(F)hG ~ /~'(S")hG 
is a weak homotopy equivalence. [] 

Proof of Theorem B. Let F --~ E ~ B satisfy the Thorn isomorphisnl, with 
B 1-connected. By taking fibcrwise join with S °, we see that  the Thorn iso- 
morphism is also satisfied for the resulting fibration. We ,nay therefore assume 
without  loss in generali ty that  the original fibration E --~ B is equipped with 
a section which is also a cofibration. 

By 3.3, there  exists a a G-cquivariant map  

H(F) -~/I(S ") 

which induces a weak equivalence on homotopy orbits. Since B = BG is 1- 
connected,  G is connected. Therefore, applying 1.4 we conclude that  the m a p  
H(F) -+ H ( S  "~) is a weak equivalence. Hence F is a homology n-sphere. [] 

4. ADDENDUM 

Using the methods  of this paper,  it is possible without much trouble to vary 
Theorems A and B in several directions. We will s tate these results without  
proof. In wha t  follows, let 

F A~ E £+ B 

be a fibration with B a connected, based space. 

Suppose tha t  ~ denotes  a locally trivial twisted coefficient system of abelian 
groups on B. Let H .  (B; ()  (/~.(B; ~)) denote the (resp. reduced) homology of 
B with  coefficients in ~. Let p*~ denote the restriction of ~ to E; note that  the  
further restr ict ion to F is constant: let this module be denoted by ~0. 

The  following is a variant of Theorem A: 

A s s e r t i o n  4.1.  Suppose that the map 

Hq(F;~o) -~ Hq(E;p*() 

is an isomolphism for  all q. Then f-Iq{B; ~) is trivia1 for all q. 

This  is a special case of a more general result concerning homology with  
coefficients in a 'bundle  of spectra '  paramctrizcd by points of B (however, we 
won' t  bother  to define what this means). 

We now give a generalization of Theorem B. Suppose that  E denotes a 
bounded below ring spec t rum and let E ,  and E" denote the corresponding 
homology and  cohomology theories. Suppose that the fibration satisfies the  
Thorn isomorphism with respect to E, i.e., there exists a class u e E'~(p) such 
that  capping with u defines an isomorphism E.(p) ~ E , _ . ( B ) .  

A s s e r t i o n  4 .2 .  With respect to these assumptions, it follows that F is a E, -  
homology (n - 1)-sphere. 
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