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Using equivariant methods, we provide straightforward proofs of
a result of Chachdlski and a result of Spivak about fibrations.

INTRODUCTION

Let h, denote a reduced homology theory on the category of based spaces and
let k. denote the corresponding extension to an unreduced homology theory on
the category of unbased spaces given by h,(X) = h,(X), where X, denotes
X with the addition of a disjoint basepoint.

The following was proved by W. Chachélski [2], using the elaborate machin-

ery of ‘cellular inequalities’ developed by E. Dror Farjoun (see [3]):
Theorem A. Suppose that

F5FE—-B
is a fibration, with B a connected, based space. Assume that
ho(F) = h.(E)

is an isomorphism for all degrees =. Then h,(B) = 0.

Chachélski tells me that Dror Farjoun has asked if a ‘classical proof’ of
Theorem A exists. The first part of this paper provides such a proof.

It is perhaps worth remarking here that if the fibration admits a section
the result is trivial, since the natural map E U CF — B is then a retraction,
and the mapping cone E U CF has trivial homology. This gives a clue as to
how the result is to be proved in the general case: in effect, we will show that
a homological retraction still exists even when the fibration doesn’t admit a
section.

The second result we shall be concerned with is crucial for establishing the
existence of the Spivak normal fibration for Poincaré duality spaces. It is
originally due to M. Spivak [5,4.3]. We state the reformulation of it given by
W. Browder [1,1.4.3].
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Theorem B. Suppose that
F-ELHB

is a fibration, where B is 1-connected. Suppose also that the Thom isomorphism
is satisfied, i.e., for some positive integer n > 2 there exists a class v € H"(p)
in singular cohomology such that the induced homomorphism

uN: Hy(p) > He_n(B)

given by cap product with v is an isomorphism for all x. Then F is a homology
(n — 1)-sphere. In particular, if F is 1-connected, then F ~ §™71.

The Spivak-Browder proof of Theorem B was computational, making intri-
cate use of the relative Serre spectral sequence.

In contrast, our methods of proving Theorems A and B will be to convert
the statements into questions involving spectra equipped with the action of a
topological group. It is well-known that a connected, based space B has the
weak homotopy type of BG, where G denotes the geometric realization of the
Kan loop group of its total singular complex. With respect to this identification,
a fibration over B corresponds to the Borel construction on a space with G-
action. This observation enables us to apply standard equivariant techniques.

A version of Theorem B is also true without the 1-connected hypothesis on
the base (cf. Ranicki [4,3.10]). In this instance, the Thom isomorphism is to be
formulated with twisted coefficients. The methods of this paper can be used
to obtain the general case (see 4.2 below). However, we only present the proof
in the case of a 1-connected base to economize on technicality.

Acknowledgments. 1 would like to express my thanks to Wojciech Chachélski
for explaining to me his proof of Theorem A. I wish to thank Andrew Ranicki for
expository improvements. Lastly, I am indebted to Bob Oliver in his function
as editor. In particular, the proof of lemma 1.2(1) is due to him (my original
argument was more complicated).

Outline of paper. §1 is preliminary. §2 contains the proof of Theorem A. §3
contains the proof of Theorem B. §4 is an addendum which contains variants
of Theorems A and B which we state without proof.

1. PRELIMINARIES

The spaces in this paper are to be given the compactly generated topology
and products are to be taken in the compactly generated sense. To insure that
some of our constructions are homotopy invariant, we will also gencrally assume
that (based) spaces are (based) CW complexes (when a construction leads us
out of this class of spaces, we implicitly apply the functor X — |SinX], ie..
the geometric realization functor composed with the total singular functor).

1.1. Spectra with G-action. Let G. be a simplicial group. The geometric
realization G := |G.| of its underlying simplicial set is then a topological group-

A pre-spectrum with G-action W is a collection of based (left) G-spaces W,
n € {0,1,...}, and equivariant maps TW,, — W, ., where G acts trivially on
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the suspension coordinate in the source. We say that W is a spectrum with G-
action when the adjoint map W, — 2W ., is a weak homotopy equivalence
(of underlying topological spaces).

Given a pre-spectrum with G-action W, we can form its spectrification W
by taking W1 to be the homotopy colimit

hocglim Q"'W,.+k .

This is a spectrum with G-action.

Given a based G-space Y, there is an associated spectrum with G-action
Y A W: it is defined to be the spectrification of the pre-spectrum with G-
action whose n-th space is Y A W, with G-acting diagonally.

If W is a pre-spectrum with G-action, its homotopy orbit spectrum Wg is
given by spectrifying the pre-spectrum with G-action whose n-th space is the
reduced Borel construction on W,,, i.e., EG4 Ag W,,, where EG denotes a free
contractible G-space.

By a map of (pre-)spectra f: X — Y with G-action, we mean a collection
of G-maps f,: X, = Y, which is compatible with the structurc maps.

Given a {pre)-spectrum X, recall that its homotopy groups n;(X) for j € Z
are given by colim j(Xn). We say X that r-connected if its homotopy groups
vanish below degree r. We say that X is bounded below if it is r-connected
for some integer r. If X is a spectrum with G-action, its homotopy groups
are a left Z[my(G)]-module. The action of [g] € m(G) on 7,(X) is defined by
applying hometopy groups to the multiplication by g map.

Call a map X — Y of (pre-)spectra (with or without G-action) a weak
equivalence if the induced map on homotopy groups is an isomorphism in every
degree. Note that the canonical map from a pre-spectrum to its spectrification
is a weak equivalence.

We use the notation S° for the sphere spectrum, whose n-th space is Q(S™)
(where Q = £2°°5>°, denotes the representing functor for stable homotopy).
We also let hZ denote the Eilenberg-Mac Lane spectrum with n-th space K(Z, n)
{the Eilenberg-Mac Lane space of type (Z,n)).

The following lemma shows that the homotopy orbit construction on the cat-
egory of pre-spectra with G-action is weak homotopy invariant. It is probably
well-known.

Lemma 1.2. (1). If X — Y is a weak equivalence of pre-spectra with G-
action, then the induced map of spectra

Xng = Yo

is a weak equivalence.
(2). More generally, if X — Y is j-connected, then so is X = Y-

Proof. (1). If X and Y are both spectra with G-action, then the result is
clear because a map X — Y is a weak equivalence in this case if and only
if the maps X,, — Y, are for every n > 0. Assume therefore that X is a
pre-spectrum with G-action. By functoriality, it will suffice to show that the
map ex: X — X! given by including a pre-spectrum into its spectrification
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induces a weak equivalence on homotopy orbits. In what follows below, we
use the notation EG4 Ag X to denote the pre-spectrum whose n-th term is
EG4 Ag X, (which spectrifies to Xj¢g).

There is a map of pre-spectra

EG, Ag X! 25 (EG, Ag X)!

which is defined on n-th spaces to be the inclusion of the first term into the
homotopy colimit of the chain of maps

EGy Ag XY — QEGy A XLy ) = QHEGy Ag X ,) — -
The composite map of pre-spectra

idEG*/\Gex

EGiAg X EG4 Ag X! 25 (EG, Ag X)Y

coincides with the evident map from the pre-spectrum EG, Ag X into its
spectrification, and is therefore a weak homotopy equivalence. In particular,
the map

dge Acex

EG, AgX EG, Ag X!

induces an injection on homotopy groups in all degrees.
We next claim that the composition

¥ (idec pcex)?
—

EG, Ag X35 (EG, A X) (EG4 Ag X!
coincides with the spectrification map egg, agx: up to homotopy. To see why,
observe that there is an evident map

EG, Ag hocolim 2°HX 4 ir; — (BG4 Ag XA .
%3

Composing the latter with each of the ‘axial’ inclusions into the displayed
double homotopy colimit (the maps given by setting i = 0 or j = 0) defines
the two maps in question. A homotopy between these inclusions is defined by
taking a suitable rotation.

Therefore, the map idgg, Ag ex also induces a surjection on homotopy
groups in all degrees (since its spectrification (idgg,Ag ex)" does). Thus, the
map idgg,Ag ex is a weak equivalence, as was to be proved.

(2). By the first part, we can assume that X and Y are spectra with G-
action. It follows that the map of n-th spaces X, — Y, is (j + n)-connected.
Since the reduced Borel construction preserves connectivity, we infer that the
map EGy Ag X — EG, Ag Y, is also (j + n)-connected. It follows that
Xng = Yyg is j-connected. O
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Lemma 1.3. Let X be bounded below pre-spectrum with G-action and as-
sume that G is connected. Furthermore, suppose that X,g has trivial homo-
topy groups. Then X has trivial homotopy groups.

Proof. If X is bounded below, there exists an integer j such that X is {j —
1)-connected. By induction, it will be sufficient to prove that X is also j-
connected. We can by 1.2(1) assume without loss in genecrality that X is also
spectrum with G-action.

The map of based G-spaces

G+'—)SO

is 1-connected, since G is connected. Hence, smashing with X, it follows that
the induced map of spectra with G-action

GiAX 2 5AX =X

is (7 + 1)-connected. The induced map of homotopy orbit spectra is identified
with the natural map

X—)th,

so by 1.2(2), the latter map is also (j + 1)-connected. Consequently, X is
j-connected. O

The following is a partial converse to 1.2(1).

Corollary 1.4. If G is connected, then a map X —+ Y of bounded below pre-
spectra with G-action which induces a weak equivalence on homotopy orbits
was also a weak equivalence to begin with.

Proof. Let C denote the homotopy cofibre of the map X — Y. Then C is
bounded below, and Cpg has trivial homotopy groups. Applying 1.3, we find
that C has trivial homotopy groups. Hence X — Y is a weak equivalence. [J

1.5. Fibrations. Let B be a connected, based space. It is well known that B
is functorially weak homotopy equivalent to the classifying space BG := EG/G
where G = |G| is the realization of a sutiable simplicial group. Namely, one
defines G. as the Kan loop group of the total singular complex of B. For this
reason, we from now on assume that B is identified with BG.

The following lemina says that in the homotopy catcgory of spaces over BG,
every fibration over BG is isomorphic to a Borel construction.

Lemma 1.6. Given a (Serre) fibration p: E — B with fiber F = p~(%), there
exists an unbased G-space F' and a weak homotopy equivalence

E——)EGXGFI

compatible with projection to B = BG, where the target denotes the unreduced
Borel construction of G acting on F'. Moreover, the induced map F = F' is
a weak homotopy equivalence of underlying spaces.

Proof. Form the pullback of p along the universal G-fibration EG — BG = B.
Let E* — EG denote the resulting fibration. Then the fiber of the latter over
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the basepoint is F, and since EG is contractible, ¥ — E* is a weak homotopy
equivalence. Moreover E* comes equipped with the structure of a G-space, and
the orbit space E*/G is identified with E in a way such that E*/G — EG/G
coincides with the projection E — B. On the other hand, the action of G
on E* is free, and the natural map E*/G — EG xg E* is a weak homotopy
equivalence which commutes with projection to BG. Hence we may define
F:=F* 0O

By means of 1.6, we may assume that any fibration £ — B is a Borel
construction with B = BG.

2. PROOF OF THEOREM A

Let :
h,: Top. — Ab

be a reduced homology theory on the category of based spaces. Then h, will de-
note the corresponding unreduced homology theory on the category of unbased
spaces.

By the Brown representability theorem, there exists a spectrum W such
that A.(Y) = 7.(W AY) up to natural isomorphism. Using W we obtain a
functor h: Top — Sp from unbased spaces to spectra by taking Z — WA Z,.
By taking homotopy groups, this recovers the unreduced theory h,.

Given a fibration )

FSELB
satisfying the hypotheses of Theorem A, we may assume by 1.6 that B = BG,
F is a G-space and F = EG x¢g F is a Borel construction.

Let W represent k.. Define a left G-action on the spectrum h(F) = WAF,
by letting G act trivially on W and taking the resulting diagonal action on the
smash product.

Lemma 2.1. Up to weak equivalence, h(E) is given by the homotopy orbit
spectrum
h(F)nG .

Moreover, with respect to this identification, the map h(i): h(F) — h(E)
coincides with the natural map h(F) — h{F).c from a spectrum with G-
action to its homotopy orbit spectrum.

Proof.

h(E) WEG x¢ F)
= WA(EGxgF),
W A (EG4 Ag Fy)
(WA Fyne

= h(F)nc
The establishes the first part. The second part is just a short diagram chase. 0
Proof of Theorem A. By 2.1, the map

It

R

h(F) - h(E)
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is identified up to homotopy with the natural map
hF)} = h(F)ng -

By hypothesis, it is a weak equivalence. Moreover, it is G-equivariant, where
the action on the target is defined to be trivial. Let us rename the target
spectrum by V. Then the map h(F) - V is a weak equivalence of spectra
with G-action, and therefore

MFWwe =~ Vig = BG,AV = ByAV =~ B, Ah(F),

where the first equality uses the fact that G acts trivially on V. With respect
to this chain of equivalences, the weak equivalence h(F) — h{(F)sc may be
identified with the inclusion map

h{(F) — By Ah(F).
Now, using the fact h(F) = W A F, we see that
By ARFY=Bi A(WAF )~ WA(ByAFL)=WA(BxF)y =h(BxF).

We therefore have that h(E) ~ h(B x F) and moreover, modulo this identifica-
tion, the map A(F) — h(E) is given by applying h to the inclusion F — B x F.
Consequently, the hypotheses imply that the map

h(F) -+ k(B x F)

is a weak equivalence. Let x € F be a choice of basepoint. Then the map
* = B x x is a retract of the inclusion F -+ B x F. Hence h(x) — h(B) is also
a weak equivalence. This means that the reduced homology of B, i.e., h.(B),
is trivial. This completes the proof of Theorem A. [

3. PROOF OF THEOREM B

In order to prove Theorem B, it will be helpful to reformulate the Thom
isomorphism for fibrations equipped with a section.

Let F — E B B be a fibration equipped with a section s: B — F such
that the section is a cofibration.

Define a diagonal map

A: E/B — (E/B) A B,
by taking induced quotients on the map of pairs (E,B) — (E x B,B x B)
defined by e + (e,p(e)).
Then the cofibration sequence

E U, C(B) =+ E Uja C(E) = BU, C(E)

shows that ( E/B) is weak equivalent to B U, C(E). Consequently, there is
an isomorphism H™(E U, C(B)) = H**(B U, C(E)).
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Example 3.1. Let F; — Eg ¥ B be a fibration. Taking the fiberwise join
with §0, we obtain a fibration ZFy — E — B with section B — E. In this
instance, we have a weak equivalence

E/B = BuU,, C(E).

The latter is often called the *Thom complex’ of the fibration Ey — B.

Definition 3.2. Let H* be reduced singular cohomology. We say that p has
a Thom class (of degree n), if it is equipped with a class « € H"(E/B) such
that capping with u by means of the diagonal map A gives an isomorphism in
singular homology

un: H(E/B) S H,._.(By)
for all degrees *.
Let H: Top. — Sp represent reduced singular homology, i.e.,
H(Y) = h(Z)AY

where we recall that h(Z) denotes the Eilenberg-Mac Lane spectrum.

Lemma 3.3. Suppose that p has a Thom class of degree n. Then there is a
G-equivariant map 3 ;
H(F)— H(S™)

where the target has the trivial G-action. Moreover, this map yields a weak
equivalence upon taking homotopy orbits.

Proof. Using the fact H™(E/B) = [E/B,h(Z),], we may represent the Thom
class as a map of spectra

S°AE/B % S™ Ah(Z).

Smash this on the right with h(Z) and then compose with the multiplication
map pu: h(Z)*? — h(Z) to give a map

uAid

E/BAK(Z)~S° A E/B AW(Z) 229 S* Ah(Z) Ah(Z) 22 $* Ah(Z).

Using the identification
Fh,¢ = E/B

we therefore have a map
Frng AN(Z) = S™ Ah(Z),
or equivalently, by giving S™ A h(Z) the trivial G-action, an equivariant map

H(F)=FAh(Z)— S"Ah(Z) = H(S™).
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Finally, applying the homotopy orbit construction yields a map
E/BAWZ)=(FAh(Z)h¢ — (S*Ah(Z))hg=B+AS"Ah(Z).
On homotopy groups, it is straightforward to check that the latter yields the

cap product N N
wn: HE/B} = He_n(B,).
By assumption, the latter is an isomorphism for all *. Consequently, the map
H(F)ng ~ H(S™)ne
is a weak homotopy equivalence. [

Proof of Theorem B. Let F — E — B satisfy the Thom isomorphism, with
B 1-connected. By taking fiberwise join with S°, we sce that the Thom iso-
morphism is also satisfied for the resulting fibration. We may therefore assume
without loss in generality that the original fibration E -» B is equipped with
a section which is also a cofibration.

By 3.3, there exists a a G-equivariant map

H(F)— H(S™
which induces a weak equivalence on homotopy orbits. Since B = BG is 1-

connected, G is connected. Therefore, applying 1.4 we conclude that the map
H(F) —» H(S™) is a weak equivalence. Hence F is a homology n-sphere. (1]

4. ADDENDUM

Using the methods of this paper, it is possible without much trouble to vary
Theorems A and B in several directions. We will state thesc results without
proof. In what follows, let

FHELB
be a fibration with B a connected, based space.

Suppose that £ denotes a locally trivial twisted coefficient system of abelian
groups on B. Let H.(B;¢) (H.(B;¢)) denote the (resp. reduced) homology of
B with coefficients in £. Let p*¢ denote the restriction of £ to E; note that the
further restriction to F is constant: let this module be denoted by &.

The following is a variant of Theorcm A:

Assertion 4.1. Suppose that the map
Hy(F;&) = Hy(Eip€)
15 an isomorphism for all g. Then I-{q{B; &) is trivial for all q.

This is a special case of a more general result concerning homology with
coefficients in a ‘bundle of spectra’ parametrized by points of B (however, we
won’t bother to define what this means).

We now give a generalization of Theorem B. Suppose that E denotes a
bounded below ring spectrum and let E, and E* denote the corresponding
homology and cohomology theories. Suppose that the fibration satisfies the
Thom isomorphism with respect to E, i.e., there exists a class u € E™(p) such
that capping with  defines an isomorphism E.(p) = E,._.(B).

Assertion 4.2. With respect to these assumptions, it follows that F is a E,-
homology (n — 1)-sphere.
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