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Abstract 

We prove the conjecture of Berstein, Hilton, and Ganea that an (n - I)-connected CW-complex 
X with dim X < k(n - 2) + 3 which has a co-Ak_,-space structure desuspends. Moreover, we 

show the following dual of a result of Segal: given a cosimplicial space Y, which is special in the 
sense that the canonical maps Vz’, Yr + k;, are homotopy equivalences and Yl is 2-connected 
then there is a functorial desuspension of Y,. 0 1997 Elsevier Science B.V. 
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1. Introduction 

It has been known for a long time that an (n - 1)-connected CW-complex of di- 

mension 6 2n - 1 has the homotopy type of a suspension. In 1963 Berstein and Hilton 

proved that an (n - 1)-connected based CW-complex X of dimension 6 3n - 3 has the 

homotopy type of a suspension provided X admits a comultiplication X + X V X with 

homotopy counit [l] (Berstein and Hilton made the additional technical requirement that 

the homology groups of X are finitely generated). In 1970 Ganea extended this result: an 

(n - I)-connected co-H-space X of dimension < 4n - 5, n > 2, has the homotopy type 

of a suspension CY if and only if it is homotopy coassociative. Moreover, the homotopy 

equivalence CY + X is a homomorphism up to homotopy [5]. Berstein-Hilton and 

Ganea conjectured that a suitable theory of co-A,-spaces, dual to Stasheff’s theory of 

An-H-spaces [13], would lead to extensions of their results. Saito has developed such a 

theory in part and managed to extend the results to co-Ad-spaces of dimension < 5n - 7 

[ 1 I]. In Stasheff’s An-space situation the following result holds [14,17]. 
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Proposition 1.1. Let X be an (n - I)-connected well-pointed Ak-l-space, k 3 3, ad- 

mitting a homotopy inverse, such that nix = 0 for i > k(n + 1) - 4. Then there is an 

Ak_l-homomorphism f : X + AMY which is a weak equivalence. Here QMY is the 

Moore loop space on Y with its natural monoid structure. 

Recall that an Ak-homomorphism is a homomorphism up to homotopy satisfying 

coherence conditions up to (k - 1)-dimensional homotopies. The purpose of this paper 

is to prove the foilowing dual result. 

Theorem 1.2. Let X be an (n - 1)-connected based CW-complex with dim X < k(n - 

2) + 3, n > 2. Then X is of the homotopy type of a suspension if and only if X is a 

co-ilk-l-space. Moreovel; the homotopy equivalence f : CY + X can be chosen to be 

a co-Ak- 1 -homomorphism. 

Corollary 1.3. A 2-connected space X is of the weak homotopy type of a suspension if 

and only if it is a co-Am-space. 

We then use our approach to prove a dual version of Segal’s delooping result [ 121 

Theorem 1.4. Let X : A + ‘Top* be a cosimplicial based space such that X0 is con- 

tractible, XI is 2-connected and (~1, . , 7riTn) : VT=, Xl + X, is a homotopy equiva- 

lence where ri : [l] + [n] maps 0 to i - 1 and 1 to i. Then there is a weak homotopy 

equivalence ERX + X1, where RX is a&nctorial, thickened version of the topological 

corealization of X. 

A result of this type has been formulated by Hopkins [7] with the weaker condition that 

XI is only l-connected. He claimed that the result follows from the homology spectral 

sequence of the cosimplicial space. In his analysis of this spectral sequence Bousfield 

addresses Hopkins result [3, (4.9)] but he requires that the corealization of X is nilpotent. 

This is certainly the case if X1 is 2-connected, and we cannot see that 1-connectedness 

suffices. Instead of the maps rk Hopkins uses the equivalence 

(11, . . , L,): \li x, 7 x, 
k=I 

where Lk : [l] + [n] maps 0 to 0 and 1 to k. A cosimplicial space in his sense induces 

one in our sense by a base change. 

The approach to desuspension which we develop here is motivated by potential appli- 

cations. A fibrant variant of the main result of this paper (see [9]) will be used by the 

first-named author in a subsequent paper to prove a Haefliger-type embedding theorem 

in the category of Poincar6 duality spaces [8]. Such embedding and desuspension results 

also play a fundamental role in the original PoincarC surgery program as formulated by 

Browder et al. It is hoped that the results of this paper can be adapted so as to complete 

the Browder program. 
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While Ganea and Saito make use of the comonad En in their proofs our proof is 

more in the spirit of Berstein-Hilton who construct the desuspension directly, although 

our methods differ. They carefully analyze the homology of the spaces involved (which 

requires the assumption that these groups are finitely generated) while we use the homo- 

topy theory of cubical diagrams developed by Goodwillie [6]. To stay away from point 

set topological difficulties we work in the category 7%~ of compactly generated spaces in 

the sense of [15]. Based spaces are assumed to be well-pointed unless stated otherwise. 

2. Al,-spaces and co-ilk-spaces 

We recall the definition of an Ak-space using the terminology of [2]. 

Let G be the category with ob 6 = IV = (0, 1, . . .}, exactly one morphism X, : n + 1 

for n 3 1, and G(n, Ic) consisting of all formal expressions 

xi, @ . 13 xi, ) i,+...+il,=n 

G(O,O) = {ido} and G(O, n) = 0 = G(n, 0) f or n > 0. Composition is defined by the 

requirement that @ is a bifunctor. 

The category G describes semigroups: a semigroup G determines a functor 4 + 7op, 

n * Gn, transforming $ into x. Conversely, if G : 6 + ‘Top is a functor such that 

G(n) = G( 1)” and G(f@g) = G(f)xG(g) then G( 1) 1s a semigroup with multiplication 

G(,&). 
We symbolize X,, n 3 2, by a box with n inputs XI,. . , .c, and one output, the 

product x1 “‘2,. Composite operations are obtained by wiring boxes together to a tree 

shaped circuit, e.g., 

Example 2.1. 

X Y Y z 

represent all possible nontrivial composite operations 3 + 1. In 6 they coincide but for 

homotopy associative multiplications they only coincide up to homotopy. To account for 

this we give each connection (between boxes) a length t E I = [0, 11. Given a tree T the 

various lengths of its connections make up the points of a cube C(T) whose dimension is 

the number of connections of T. We thus obtain a new category 78 with ob 74 = ob G 

and 76(n, 1) = u C(T), T running through all trees with n inputs, 

7G(n, k) = fl7E(ii, 1) x...xTG(ik,l) withil+...+ik=n. 
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Let T be a tree with lengths in 7G(Ic, 1) and let (T,, . . , Tk) E TG(n, k) be a Ic-tuple 

of trees; then T o (T,, . . , Tk) is the tree obtained from T by sticking Ti onto its ith 

input and giving the newly created connections the lengths 1. The trivial tree serves as 

idr . We have a continuous pairing 63 : ‘7-G x ‘7-G + 7-G defined by 

(Tr,. . . ,Tk) CE (Tk+l,. . . ,Tk+l) = (TI,. . ,Ttc+~). 

Composition then is determined by the requirement that 69 is a bifunctor. It is continuous. 

Let WG be the quotient category of ‘7-G obtained by imposing the relation that a 

connection of length 0 may be shrunk by amalgamating the two boxes at its ends to a 

single one. Observe that the trees in Example 2.1(l) and (3) represent unit intervals in 

WG(3, 1) which are identified at 0 with the tree (2). Hence the trees of Example 2.1 

codify an associating homotopy. 

Definition 2.2. Let M&G be the full subcategory of WG of objects 0, 1,. . , k. An Ak- 

space is a continuous functor X : V&G + Top mapping @ to x (in particular X(n) = 

X( l)n) such that the multiplication X(X,) :X(l)* + X( 1) admits a homotopy unit. 

(Note that we do not require any coherence for the homotopy unit.) By abuse of notation 

we often denote X(1) by X. 

Remark 2.3. The map E : WG + G which maps a tree with n inputs to X, is a continuous 

functor admitting a nonfunctorial section r] : G + WG mapping X, to the tree with a 

single vertex and 7~ inputs if n > 1 and to the trivial tree for 72 = 1. As maps of morphism 

spaces n o E N id (the homotopy shrinks the lengths of connections by the factor t at 

time t). 

It can be shown that PVG(n, 1) is a subdivision of the Stasheff cell Kn of [13] into 

cubes. So our definition coincides with the one of Stasheff with the exception that he 

makes the stronger requirement that X(X,) admits a strict unit e. But if {e} C X is a 

closed cofibration both definitions are equivalent [2, Chapter I]. 

Co-Ah-spaces are defined dually: 

Definition 2.4. A co-Al,-space is a continuous functor X: (V&G)“! + ‘I$* into the 

category of well-based topological spaces mapping @ to the wedge sum V such that 

the comultiplication X(&) :X( 1) + X( 1) V X( 1) admits a homotopy counit (i.e., 

pi o X(X2) Y id, where pi :X(l) V X(1) + X( 1) is the ith projection, i = 1,2). Again 

we often write X for X( 1). 

Example 2.5. Let C be an operad without permutations in the sense of [IO]. We associate 

to C a category C with ob C = IV, 

C(lz, k) = u C(ii) x . . x C(ik) with ir +. . . + ik = n and all ij > 0. 

C(O,O) = {ida} and C(0, n) = C(n, 0) = 0 if n > 0. Taking products defines a pairing 

@ : C x C + C. Composition 

C(k, 1) x C(n, k) + C(n, 1) 
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is defined by the structure map y of the operad. General composition then is determined 

by the requirement that $ is a bifunctor. 

Call C an Ak-operud if C(j) 2 * for j < k. If C is an Arc-operad, there is a continuous 

B-preserving functor FC : Wr;G + C by [2, 3.171. If F& is another such functor then 

there is a homotopy through continuous $-preserving functors from Fc: to F&. 

A co-C-space is a collection of maps 

bLIL : x A c(n)+ i x v . ‘. v x = XV” 

(n-fold wedge) where C(n)+ = C(n) u {*}, such that ~1 (x: 1) = z and 

pLi;Aid 
x A c(k)+ A c(i,)+ A . ” A C(ik)+ - X”” A c(i,)+ A ‘. . A c(i,)+ 

1 
Y 

1 
pr4 

x A (C(k) x C(i,) x “. x c(i,))+ (X A c(i,)+) v . . . v (X A C(ib)f) 

1 
idAy 

1 

b, “...“PLk 

x A c(n)+ 
ILn 

* xvn 

commutes. It determines a co-C-space, i.e., a continuous functor C”P _j 7op* mapping 

@ to V, hence a continuous functor (Wk@“P + fip* mapping ~f3 to V. 

If C is an Ak-operad, k 3 2, then any co-C-space has a homotopy counit. Hence it is 

a co-ilk-space. 

Example 2.6. Let Q be the “little l-cubes” category [2, 2.531 describing loop space 

structures. A point in Q(n, 1) is a tuple (XI, ~1,. . , cc,, gn) of points in 1 such that 

0 6 Xl < yl 6 22 < y2 < .'. < 2, < y, , < 1, and should be considered as an 

embedding of n. intervals [zz, yi] into I such that the images have disjoint interiors. The 

spaces Q(n, 1) and the composition in Q define the little cube operad C, of [lo]. 

Let Z be a based space. Then CZ is a co-&-space and hence a co-Am-space with 

CL, : cz A Q(n, I)+ + cz v . . v cz 

E kth summand 

if t E [Q~Y~], 

* otherwise. 

Remark 2.7. In their treatment of multiplications on topological spaces Boardman and 

Vogt [2] and May [lo] have homotopy units incorporated into the structure as 0-ary oper- 

ations or points in the 0th space C(0) of an operad C respectively. We here merely require 

homotopy units outside the structure, i.e., their existence without specifying a particular 

one. This weaker condition suffices for our purposes and simplifies our argument. 
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3. Cubical diagrams 

For the reader’s convenience we recall Goodwillie’s results about cubical diagrams. 

Let &, denote the category of all subsets of 24 = { 1, . . . , n} and inclusions, and Jn 

and 7, the full subcategories of all objects except for 24 respectively 0. For n = 0 we 

take n = 0. A diagram D : Q, -+ ‘7%~’ is a cubical diagram of based spaces with D(T) 

sitting at the comer with coordinates (~1, . . . , E,) where 

1 if i ET. 
Ei = 

0 ifi$!T, 

Dl& and 017, are the subdiagrams of all proper initial and terminal faces respectively. 

Definition 3.1. D is called k-Cartesian if the canonical map D(0) + holim 017, is 

k-connected, and k-co-Cartesian if the canonical map hocolim Df& + D(n) is k- 

connected. 

For T c n let aTD be the restriction of D to the ITI-dimensional face with initial 

vertex 0 and terminal vertex T and ~,_TD the restriction of D to the IT/-dimensional 

face with initial vertex 14 - T and terminal vertex 21 ((T( denotes the number of elements 

of T). 

Proposition 3.2 (Goodwillie [6]). Let D: &, + ‘Top*, n 3 1, be a diagram such that 

(i) aTD is c(T)-co-Cartesian for all T c Q, T # 0, 

(ii) c(U) 6 c(T)for U c T. 
Then D is k-Cartesian with 

I-n+xc(T,,); {T,}apartitionofnintoT,#0 
cy 

Proposition 3.3 (Goodwillie [6]). Let D : &, -+ Top*, n 3 1, be a diagram such that 

(i) ~,_TD is k(T)-Cartesian for all T c Q, T # 0, 

(ii) k(U) 6 k(T)for U c T. 

Then D is c-co-Cartesian with 

c = Min n - 1 + c k(T,); {Tcy} is a partition of 21 into T, # 0 . 
a 

Remark 3.4. We will have to apply these results to coherently homotopy commutative 

diagrams in the sense of Section 5 rather than commutative ones. Fortunately they hold 

in this case too (e.g., a stronger version of [6, Theorem 2.41 for homotopy commutative 

cube diagrams can be found in [18, Proposition 5.51). Indeed, by [16, Proposition 5.41 

each coherently homotopy commutative cube is equivalent to a strictly commutative one, 

and the equivalence induces an equivalence of their homotopy limits and colimits. 
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4. The Berstein-Hilton result 

Before we prove Theorem 1.2 we illustrate our strategy by reproving the Berstein- 

Hilton result. 

Let X be an (n - I)-connected co-H-space, n 3 2, with comultiplication 

/“IX -+xvx. 

Consider the diagram of based spaces (translating into cube coordinates P3 = II(@) 
corresponds to (0; 0,O) and X V X = D(J) corresponds to (1.1. 1)): 

Diagram 4.1. 

where ik is the inclusion of the kth wedge summand. The maps it, i2, ~1 and j define a 

diagram 7; + %p*, which we complete to a &-diagram by taking the homotopy limit 

9. Note that P3 can be obtained by taking iterated homotopy pullbacks: let RZ be the 

homotopy pullback of 

xAxvx&x. 

and P2 the one of * + X t * (hence P2 is the loop space QX and R2 the cojoin 

X c X); then Ps is the homotopy pullback: 

Diagram 4.2. 

4 h p2 

I I 

The bottom face of Diagram 4.1 is a diagram from Q2 to 7%~” which is co-Cartesian 

(meaning cc-co-Cartesian) and j is (n - I)-connected. By Proposition 3.2 the map 
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j’ : * + R2 and hence R2 is (2n - 3)-connected. Since Diagram 4.2 is a homotopy 

pullback diagram the map P3 + P2 is also (272 - 3)-connected. In particular, Pa is 

connected. 

Let M3 be the homotopy colimit of Diagram 4.1 restricted to 33. We can obtain A43 

by taking iterated homotopy pushouts: since CP, and X V X are the homotopy pushouts 

of * t P3 + * and X t * + X respectively, we have a homotopy pushout diagram: 

Diagram 4.3. 

CP3AX 

I I 

41 

XVX-=-+M3 

where r2 is the map induced by the top face of Diagram 4.1. By construction, the cube of 

Diagram 4.1 is Cartesian. Each terminal 2-dimensional face is co-Cartesian (here we need 

that X is a l-connected co-H-space) and hence (2n - 3)-Cartesian by Proposition 3.2 

since j is (n- I)-connected. Since CL, ii and i2 are (n- I)-connected the cube is (3n-2)- 

co-Cartesian by Proposition 3.3. In particular, the induced map rg : A43 + X V X is 

(3n - 2)-connected. Since r3 o ga N id, the map g3 is (3n - 3)-connected. Hence r2 is 

homology (3n - 3)-connected because Diagram 4.3 is a homotopy pushout. Since CP3 

and X are simply connected r2 is homotopy (3n - 3)-connected. We summarize 

Proposition 4.4. Let X be an (n - 1)-connected CW-complex with a co-H-space struc- 

ture, n 3 2. Then CP3 -+ X is (3n - 3)-connected. Hence there is a CW-complex K 

and a homotopy equivalence CK N X. 

For the second part we refer the reader to the proof of Theorem 1.2 at the end of 

Section 6. 

5. Cubical diagrams of co-Ak-spaces 

In this section we construct Diagram 4.1 in the general case. The category WG of 

Example 2.1 only codifies the coherence of comultiplications. To incorporate inclusions 

such as ii, i2 : X -+ X V X or j : * + X we have to enlarge it to a category W*G. We 

define ob: W*G = ob WG and 

W*G(n, k) = fl WG(l, k) x Inj(l, rz) 

where Inj(l, n) is the set of ordered injections 1 + n. In particular, W*G(n, 0) consists 

of a single element (ida, 0 + 22). 

Composition of (f, a) E WG(l, k) x Inj(l, n) with 

(91 @ . . . B sn, P) E WG(m, n> x Wm, P> 
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is defined by 

(f: a) O (9 @ . ‘. @ gnr a) = (f 0 (LL(l) cg . ‘. 83 SC?(l)), 0 0 N(ml 

Here gi E WG(mi, l), m = ml +. . . + m,, and 

a(ml, . . m,) : m,(l) + . . . + 7r~l,(~) + m 

is the injection sending m,(,) + . . . + m,(i_,i + j to ml + m2 + . . . 

1 < j < m,(q, 1 < i < I. 

. > mn)). 

+ m,(i)_1 +j for 

The bifunctor @ extends to W*G by 

(f, a) @ (9, P) = (f @ 9, QS u P) 

where a U /3 is the ordered disjoint union. 

Let PVlG denote the full subcategory of W*G consisting of all objects j < Ic. A co- 

Al,-space X : (WkG’)“P + ‘Ti~p* extends to a continuous functor 

X” : (w;4)“p * Tilp* 

mapping @ to V by 

X’c(f, o,) : XV” x3 xv1 -+ yn 

for (.f,a) E WG(l,k) x Inj(l, ), h n w ere (Y* maps the ith summand identically onto the 

a(i)th one (checking of functoriality is left to the reader). 

In an analogous way we can adjoin the injections to 4 to obtain a category G*. We 

have the following fact: 

Proposition 5.1. The augmentation functor E : WG + G and its section r] : G + WG 

extend to afinctor E* : W*G -+ 4* and a nonfinctorial section q* : 4* + W*G. Again 

E* is a homotopy equivalence on morphism spaces with homotopy inverse q*. 

For a co-H-space we started with the commutative x-diagram 4.1. For a co-Ak_ I - 

space with k - 1 3 3 associating homotopies enter the picture, and we only can hope for 

a coherently homotopy commutative 7k-diagram to start with. To describe this we need 

a variant of Example 2.1: 

Let 27 be a small category. Homotopy coherent D-diagrams are codified by the topo- 

logical category WD [2, Chapter VII] with ob WD = ob 2) and 

WD(A, R) = u Dn+, (A, B) x I” /- 
n > 

where D,+, (A, B) is the set of (n + 1 )-tuples (fn, . . , fo) of morphisms in V such that 

fn o . . . o fo : A + B is defined. The relations are 

if fn = id, 

(.fn, tn,. . ~,f,,t,,fo)= (fn, . . . . fi+l,max(ti+l,ti),fi-l,...,fo) if.fi=id, 
(fn: tn, . > t2. fl) if fo = id, 

(fm ‘. , fL+I 0 ft. ti, f > fo) if ti+, = 0. 
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Composition is defined by 

(~~,tn,...,fo)O(gp,Up,...,go) = (fn,t7L,...,fO,l,gp,Up,...,go) 

WD can be viewed as obtained from YD by taking the free category over the diagram 2) 

and putting back the relations up to coherent homotopies. 

Lemma 5.2. The augmentation E : WV + D, (fi7, t,, . . , fo) ti fn, 0. ’ . of0 is a homo- 

topy equivalence of morphism spaces with the nonfinctorial section r~ : 2) + W2), f t+ 

(f) as homotopy inverse [2, Proposition 3.151. 

Definition 5.3 [2]. A homotopy coherent D-diagram is a continuous functor D : WD + 

rap* . 

Example 5.4. A homotopy &-diagram X : &2 --+ %p* is given by 

X0 
X(,(f)) 

421 

and two based homotopies F:X(q(h)) N X(11(3)) o X(7(f)) and G:X(q(h)) N 

X(77(7)) o X(q(g)) which are part of the structure. Here 7 : QZ + WQ2 is the canonical 

section and the morphisms f, 7, g, ?j, and h in QZ are the inclusions of the indexing sets 

of the spaces at the vertices. Obviously, a homotopy commutative square with a specified 

homotopy induces a homotopy &-diagram and vice versa. 

Before we can construct our homotopy Tk-diagram we need another functor which 

will turn out to be also useful for the proof of Theorem 1.4. 

Construction 5.5. Let n’“J denote the category of ordered sets [n] = (0, 1, . . . , n} and 

order preserving injections and ny the full subcategory of objects [j], j < lc. Define a 

functor 

61, :rj ++ AT_, 

by &c({il> . ..,i,})=Ip-1].Identifyil<...<i,inorderwithO<1<...<p-1. 

Then an inclusion cy : {il, . . , ip} c {jl, . . . , j,} defines a unique order preserving map 

tik((~) : lp - I] + [q - 11. (We always list the elements of a subset of n in increasing 

order.) 

Construction 5.6. Cpk : A? + (Gi)“P is defined by sending [j] to j and Q : [p] + [q] to 

( 6 b(i)-a(i-I) > o‘a > 

i=l ) 
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where 0 a : a(p) - a(O) + g is the ordered injection missing the elements 1, . . ~ a(O), - 
a(p) + 1,. . , 4. 

Construction 5.7. We now turn to the actual construction of a continuous functor 

Let X : (wk_ I G)Op + ‘?$I* be a co-Ak_ 1 -space. Then $k is a composite 

+‘k: : WTk, % (w,*_, g)“’ 5 ?-@* 

and hence functorial in X. We need all terminal faces of ?,!& highly co-Cartesian. To 

achieve this we construct ok in such a way that all 2-dimensional faces of X” o & are 

co-Cartesian. It then follows that all higher dimensional faces of $k: are co-Cartesian too; 

a diagram of this kind is called strongly co-Cartesian in [6]. 

As explained in Example 5.4 it suffices to specify ok on all objects and on morphisms 

77(f) for f: {it,. . . , ip} C (11, . , I,+ I} in 7;; and to define homotopies ~(9) o n(f) = 

q(f) 0 q(g) for S o f = f o g : {il, . ,ip} c {jl:. ,&+?}. To simplify notation we 

write f for n(f) if there is no chance for confusion. 

On objects and on morphisms f as above 81, is given by n* o ‘p&t o ‘81, o E where 

E : w7k + Tk is the canonical augmentation and n* : ($$, )“P + (Wl_, G)“P the canon- 

ical section. In detail: 

~k({b. :i,}) =p- 1. 

Ifp= 1 wetakeBk(f)=(id,j,8+1),andifp> 1 

i 

LI @ idn--:! if It $ Image f: 

ok(f) = idr_:! @3 x2 $ id,_, ifl,$Imagef, 1 <r<p+l, 

idp_-2 @ ~2 if 1,+1 $ Image f. 

where L T : 1 + 2 denotes the injection missing the rth element. We now define the 

homotopies: Let h: {i,, . . . , ip} c {j,, . . ;jp+2} be a morphism in 7k and j, < .jq the 

elements not in the image of h. Then h decomposes in 7k into 

h=gof:{i ,,..., ip} c {j ,,..., 3, ,... ,jn+?} c {j I,..., jp+2} 

=fog:{i,, . . . . in} c {j l...., jr ).... &+2} c {j,: . . . . &+z} 

where ji means that this element is deleted. 

Case 5.7.1. If 1 < r < q < p + 2 we have a diagram 

P- 1 
id, 2%X2CBid,_, 

*P 
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which commutes if q > T + 1. 

If q = T + 1 this diagram reduces to the form 

The square commutes up to homotopy by the associating homotopy 

v*(id $ A,) o I’ N 71*(Xx) = 11*(X2 83 id) 071*(x2). 

Case 5.7.2. If T = 1, q = 2 we have a commutative square 

O-1 

and similarly for T = p + 1, q = p + 2. 

Case 5.7.3. If T = 1 and q = p + 2 we have commutative squares 

for p > 1, respectively p = 1. 

The diagrams of Cases 5.7.2 and 5.7.3 also take care of the case p = 1 

Case 5.7.4. If T = 1 and 2 < q < p + 2 we have a commutative square 

P-1 
Ll@&--2 

*P 

and similarly for 1 < T < p + 1 and Q = p + 2. 
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Let V c W7r~ be the subcategory generated by all WQ2 c VW,+ where Q2 runs 

through all 2-dimensional faces of ‘7Jk. Then our construction defines Ok on V. We now 

apply the lifting theorem [2, 3.171 to 

wrk (w;_ , G)“P 

E 

% 
Pk-lOflk 

to obtain an extension of &IV to WTk. 

Lemma 5.8. Let X be a l-connected co-Ak_ 1 -space, k > 3. Then ,for each (k - l)- 

dimensional ,far:e S of Tk the homotopy coherent S-diagram 

?JklwS: WS + 7op* 

is strongly (homotopy) co-Cartesian in the sense of [6, 2.11. 

Proof. We have to show that the specified faces of the functor Ok are homotopy pushouts 

after composition with X*. This holds for the first diagram of Case 5.7.1, and for 

Case 5.7.4 if T = 1 and 3 < q or T < p and q = p + 2. For given maps f : A + B and 

9 : C + D in Top*, the square 

AvCfVidBvC 

I I 
idVg idvg 

+ fvid $ 
AVD-BVD 

is always a homotopy pushout. Case 5.7.3 holds by direct investigation. For the second 

diagram of Case 5.7.1 we use the fact that a l-connected homotopy associative co-H- 

space which is a CW-complex has a 2-sided inverse [5, Proposition 3.61. For Case 5.7.2 

we appeal to [ 19, Lemma 3.31. 0 

6. Proof of Theorem 1.2 

Recall from Diagrams 4.2 and 4.3 that the homotopy limit Pj of the W7s-diagram 

we started with can be obtained as an iterated homotopy pullback and that the homo- 

topy colimit Mj of the induced WJs-diagram can be obtained as an iterated homotopy 

pushout. 

We mimic this in the general case. So let $1 : W7[ + Top*, 2 < 1 < k be the cube 

diagrams determined by the co-Al-I-structures of the co-Ak_t-space X. Let Sk-1 c Tk 

be the face defined by all subsets of Ic containing the element 1 (it corresponds to 
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the bottom face of Diagram 4.1), and Tsk_ 1 obtained from it by deleting the initial 

vertex. TSk_1 is the subdiagram of all proper terminal faces of Sk_,. Let Pl denote 

the homotopy limit (in the sense of [16]) of the coherently homotopy commutative x- 

diagram $l and Rk_1 the one of the subdiagram WTSk_1 + %p*. Observe that Pl and 

&_r are still well-pointed by [16, Proposition 6.91. We can obtain P, as the homotopy 

limit of the induced diagram 

* = &{l} + Rk_, t 4-1 

(compare [18, Proposition 5.41). In particular, we have a sequence of fibrations 

pk 
plc_p ~ Pk-1 k ,-...--%pz = fix 

with fiber&) = flRk_1. Since ‘$!&jWSk-~ is strongly Co-Cartesian and each map 

$&(k\{i} + k) : Xv(k-2) + X”(“-‘1 is (n - I)-connected, the induced map * + Rk-1 
is(l-(k-l)+(k-l)(n-l))- connected by Proposition 3.2, and so is pk. Since n > 2 

and P2 = 0X each Pk, k 3 2, is connected. 

Pk together with the universal transformation Pk + $k extends $k to a Mi&&.-diagram 

@k : WQk + fip*, i.e., to a homotopy coherent k-dimensional cube diagram. Let 7 C 

&k be an l-dimensional terminal face, 1 < k. By Lemma 5.8 it is strongly co-Cartesian, 

and hence by Proposition 3.2 (1 + I(n - 2))-Cartesian. Since @I, is infinitely Cartesian 

it is (k - 1 + 2 + k(n - 2))-co-Cartesian by Proposition 3.3. 

Recall that 3~ c &,+ is the subcategory of all subsets of l C b, 1 < k, except for 1 

itself. Let Zl-1 c 3~ denote the subcategory of all subsets containing I and JZl-I the 

full subcategory of Zl-t containing all but the terminal element, and let Ml denote the 

homotopy colimit of @k 1 WJt . 

By Lemma 5.8 the homotopy colimit of @I,Iw~~~_I is X”(‘-‘1 and the induced map 

to the terminal vertex of Zl-1 is a homotopy equivalence. By [18, Proposition 5.41 we 

have homotopy pushout diagrams: 

Diagram 6.1. 

for 3 6 1 < k, where rl : A41 -+ X “(l-l) is the induced map into the terminal vertex 

of @klw&. Then, as noted above, ~1 o gl N id. Since Ok is (k(n - 2) + k + I)-co- 

Cartesian, rk is (k(n - 2) + k + I)-connected, hence gk is (k(n - 2) + k)-connected. 

Since Diagram 6.1 is a homotopy pushout, r&t is homology (k(n - 2) + k)-connected. 

By downwards induction we obtain 

r2 : CP, = M2 + x 
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is homology (k(n - 2) + 3)- connected. Since Cl’, and X are both l-connected, this 

implies that r2 is (k(n - 2) + 3)- connected. We have proved the connectivity part 

of 

Proposition 6.2. Let X be an (n - I)-connected co-ilk-l-space, n 3 2, k >, 3. Let Pk 

be the homotopy limit of its associated coherently homotopy commutative Tk-diagram. 

Then the induced map 

is a (k . (n - 2) + 3)- connected CO-Ak_ 1 -homomorphism. 

It remains to show that r2 : cpk = M* --f X is a CO-..& I -homomorphism. The first 

of Diagrams 6.1 is obtained from (see also Diagram 4.3) 

r), * 

with p = X(v(X2)). The induced map q3 : Al, = CP, + X V X factors through 

the standard pinch map and a wedge of two maps so that we arrive at a homotopy 

commutative diagram 

cP,Ax 

1 pinch 

CP, v CP, 

Since rs o gs r” id and the pinch map and 1-1 have counits we deduce f E r2 rv g. Hence 

rz is a homomorphism of co-H-spaces up to homotopy (to obtain higher coherence one 

has to include the higher dimensional cubes into the argument; we leave this to the 

reader). 
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Proof of Theorem 1.2. Let K be the CW-approximation of 9, and suppose that X 

is a CW-complex with dimX < Ic(n - 2) + 3. Since Hk(n_2~+3X is free abelian and 

r2 induces a map 4: CK + X which is a homology isomorphism in dimensions less 

than Ic(n - 2) + 3 and a homology epimorphism in dimension k(n - 2) + 3, there is a 

(k(n - 2) +2)-d imensional CW-complex Y having the same (Ic(n - 2) + I)-skeleton as 

K and a map f : Y + K such that q o Cf : CY + X is a homology isomorphism (cf. [ 1, 

Theorem 2.11). Moreover, q o Cf is a co-ilk-l-map. Since EY and X are l-connected 

it is a homotopy equivalence. 

7. Proof of Theorem 1.4 

Let X : A -+ %p* be a based cosimplicial space such that X0 is contractible, Xi is 

2-connected, and 
n 

(W 1.. . , %L): VXl +-L 

k=l 

is a homotopy equivalence. Define 

p:x%x*+xvx 

where the second map is a homotopy inverse of (~1, ~2) = (cl*, do). (By abuse of notation 

we write X for Xi .) Then (X, p) is a co-H-space because 

commutes up to homotopy since Xa is contractible. In a similar way one verifies that 

(X, p) is homotopy associative. 

Lemma 7.1. Each l-dimensionalface, 1 > 2, of X 0191~ : Tk -+ A?:, -+ Top” is strongly 

homotopy co-Cartesian. 

Proof. We evaluate X o flk on 2-dimensional faces. Let a: : { il , . . . , iP} C {jl , . . . , jP+2} 

be an inclusion. If a: misses j, < j, the associated square is 

Diagram 7.2. 
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Each such square is homotopy equivalent to a square considered in the proof of 

Lemma 5.8 and hence a homotopy pushout: for 0 < i < p + 1 consider 

Diagram 7.3. 

XV(i-‘) “X ” p(p-9 -=5-x?, 

f j,dvd’“id IdA 
XV(i-I) ” (X ” X) ” Xv(p-i)idv(di’do)v’d > xv(“-l) ” x7 ” _p(P-c -xp+1 

The map id V (d*, do) V id = id V ( rl, q) V id is an equivalence by assumption on 

X, and so are the other horizontal equivalences. The square commutes while the triangle 

commutes up to homotopy. Hence, if 1 < T < 4 < p + 2, Diagram 7.2 is equivalent to 

XV(P-1) 
id,._zVpVid,,_, 

rXVP 

+ id,_zVpVid,+l_, + 

XVP +jyv(P+l) 

which corresponds to Case 5.7.1, and hence is a homotopy pushout, because (X, p) is a 

homotopy associative co-H-space. For do, dP+’ : X, + X,+, the squares corresponding 

to Diagram 7.3 arise from 

xvxp~xp --++x,vx 

+ 
d” 

II 
X 

dP+ I i 

p+l t-----p -x,+1 

As before, the remaining cases of Diagram 7.2 

hence are homotopy pushouts. q 

give diagrams of Cases 5.7.2-5.7.4 and 

Proof of Corollary 1.3 and Theorem 1.4. Let Pk denote the homotopy limit of X o v.Y~. 

As shown in the proof of Theorem 1.2 we obtain a sequence of fibrations 

“. * PJ 3 P3 3 P2 N RX 

such that pk : Pk + 4-1 is k-connected because X is 2-connected, and a (Ic + 3)- 

connected map rl~ : CP, + X. Let P be the homotopy limit of the 4. Since 

hm’ xi(&) = 0 

we have 

nk(P) ” limKk(PZ) ” rk(Pk). 

In particular, the natural projection q,+ : P + Pk is k-connected. The maps rk : CPk + X 

are compatible with the pk up to homotopy and induce a map 

CP+X. 

Since CP + CPk -+ X is (Ic + 1)-connected, this map is a weak equivalence. 
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