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Abstract, By doing parametrized Morse theory on circle bundles over §% we produce ‘pictures

representing elements i\ of cyclotomic number fields. By compuling the reguiaior map on these
pictures, we show that they are rationally nontrivial
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in Part I, we gave a formula for the Bo
of K3 represented by pictures. In Part 11 ve will x}"?%'g}é Hy *hm ‘wzmuiz‘ g0 that it is
flectively computable, we will constroct eni it pictures L, {Figure 2.3 in Part A)
representing elements of K, 7 é_f %hé}f«s g8 an nieﬁifzvmi ath root of unity and we
will show that b(L,) = n Im dilo Ch

The pictures L, were emameé by doing parametrized Morse ?heozy on circle
bundies over §7. The idea is very simple. A circle is basically 2
faraily of circles parametrized by S Any generic smooth function JiE— R gives a
Morse funciion on aémgs? every fiber. Bach such &4 function produces an

sinant of this matrix will
we can map ¥ 1o

ncidenge matrix with coeficients in Zin EY and the de
e | —u where u is the generator of 7, E = )
¢ = Q[ these matrices will hecome invertible and

ey

2t A two parameier
- oy w - ol DA T i o
izmily of invertible matrices. Over 3 one- d%m{iuﬁ{}ﬂzzi sibset of 87, the restriction of

f to the corresponding fiber will not be a ?ﬁ@zce fuméif‘-’} Thiz
changes along this one-dimensional set. In fact changes by
and column operations uniguely S{%ﬁﬂuﬁd by i?}f: principle
gives us a ‘generalized picture’ *eg}“eg i
Part B) If £ is chosen to be a particu
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25 KIVOSHT IOQUSA AND JOHN KLEIN

oriented gonsralized Morse function (PGMFE,, ther this glement of KQ[Z] will be
uniguely determined.

Our formula for the Borel regulator map works only for “pictures’ which are
two-parameter families of invertible matrices which are only allowsd to change by
column operations along a one-dimensional subset of the parameter space S°.
Therefore we "sxchange’ all the row operations in this generalized picture 1o column
operations. This produces the picture L.

This construction is a special case of the higher Reidemeister torsion imvariant
defined in [11, 121, The general situation is that there is & smooth bundie E over an
even-dimensional sphere 5% and a unitary representation of m, £ with respect 1o
which each fiber becomes acyclic. Then a fiberwise ‘framed’ function on B ogives a
family of acyclic chain complexes over © parametrized by 577 This gives an element
of K+ 0 modulo some indeterminacy. However, if we apply the Borel regulator
map b, Ka,00 — Rowegela well-defined real valued invariant of the bundle £ - § n
which is called the higher Reidemeister torsion, since it agrees with the usual
Reidemeister torsion of E {actually the difference between the torsions of the two
components) in the case when n = 0. This will be explained in greater detail in [10].

This paper is divided into two parts, In Part A we simpiified the formula for the
Borel regulator map and we do explicit computations on the pictures L,. In Part ]
we explain how these pictures were obtained by parametrized Morse theory on circle
bundies.

ART A: COMPUTATION OF THE BOREL REGULATOR MAP
ON THE PICTURES L,

1. Computation of the Functions p ang /

In order to actually compute the Borel regulator map DN any given picture, we need
J o = 4B e

a better formula for the function p which was defined in Part { as an integral of the

Bioch-Wigner function I;. In this section, wo will show how both p and the related

function 1 can be computed.

pRix, v, z), where x. ¥, Z ar¢ three noncollinear projective points in P, (1)

lix, v, 2}, where x, ¥, 7 3i€ distinet projective points in PHT. {23
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W '%zerb {Lp. L} runs over all point-line pairs in PY{D)

2} where ab = span{g, b).

The computation is based on the fact thai the Bioch

following elementary identity:
Da{Z) = — Dyfz).

In parttcular, Doz =0 il z is
this property. Thus, w

reah

LEMMA 11

@) pS(X, Bz} = — pS{x, v, 2}
by X, 20 = — H{x, 3,20,

where, e.g., X is given by conjugating ail the coordinates of x.

LEMMA 1.2,

z} =

{a) pS{x, v,
{

by Ix,

tis

8 if any two of the vectors >
2} =0 if any two of the vectors

%
e

B )

L We also =

reoull that S{x. v o)

h-Wigner function satisfies the

{3)

easy 1o see that the functions p and | inherit

we get the following lemma,

i 2 are perpendicular,
X, ¥,z are perpendicular.

Proof. In both cases, there is & unitary transformation g so that 4%, g¥, gz have

all real coordinates. By Lemma 1.1, this forces the valuss of pand ! to be zer

Let x, y. 7 be three points in P*C) w

orthogonal. Then the progﬁf;tac Hin

nes
of x in three points 4. b, ¢ respectively

THEOREM 14, pS(x, y.2) = {{a, v, 2)
FProof. By Proposition 3.7

Pz,

3

s

vozh 4 pSlx, a v} + pSix. z,a) = Ha, v, 2} — 1(3

O

%21(:?‘; are not collinear and so that ao two are
X¥, Xz mest the orthogonal complement x*
ce Figure 1.31

— Ha, b, el
7in Part 1A, we have
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but pS(x,a, y) =0 = pS{x, z, 4) by Lemma £.2 and
[{%a, xb, %) = l{a, b, c)
by the stability of { {Proposition 3.3(d) in Part 1A). O

One conseauence of this is the following stronger version of Lemma L
g 8

P
Al
)

COROLLARY 1.5 pSix.y.zi=01If any two of the profective
perpendicular.

Proof. Suppose that Xy amd yZ are perpendicular. Then each projective line
contains the orthogonal cemg}iumcm G%“ the other s¢ in %‘he 50{?*{11.%5 pEix, y, 21 =
Ha, vz} — Ha. b, ¢} of Theorem 1.4 we have that o= x'n yz is the orthogonal
cems:}é;,mym of xy. Consequently, a is orthogopal (o both v and b = x~ N Xy so both
! terms vanish by Lemma 1.2{b}. [

:

The computation of pSix, v, 2} has now been reduced to the computation of the
function {

LEMMA 1.6, Suppose that a, b, ¢ are distinct points in PHTy Then
Ha, byey — Ha* b, ¢y = Dol o b0l

Proof. 1t follows from the 5-point identity for D.r that

Dorla®, aboo) = Ha, be) — g Jhoov e Has, a0y — Ha™, a B
Bui, by Lemma 1.2 . the last two ferms are zero. O

LEMMA 1.7, For any three s}siﬂz“‘ a b.cin PHT we have Hla, b oy = — o= b7 o)
Proof. 1t follows from (3 that la b« 7 B 21 But the unitary matrix
i/ G i\,\i
T H {\} 7

tcransforms 4. b ¢ into gt bt ¢, respectively, so Ha. b, oy = {{a”
THEOREM L8 For any three distines points 4, 5,0 1n PHEY we have
&g, b, oy = 2D,ria”

+ Daribt bc,a7)

Q::"!
«W.
s
i
o
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-
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o
-
,;5‘
e
o
=

Proof, By Lemmas 1.0 & and 1.7, we see that

2ia, by - 2at boo),

= 2H{a b,y — 2B ¢ )
2l b, ) — 2ict a. b,

oy
m
]
-
|
i
o]
i
P
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I
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This formula was obtained from the following geometric mterpretation of the
function Ha, b, ¢},

PROPOSITION 19, If a b, ¢ are three distinct points in PYHTY, then
’5{a ’l} ‘,} 5T0{zm}

with pertices 3, a, b, ¢

where T is the ideal tetrahedron in hyperbolic
where 4, b, ¢ liz in PHCY =

LB 1

Progf. I x is another point in PHO), thep it is well kaown 157 that

692?{:{* &, ;1 {j:} =¥ {}E‘ ?\abr? {45

for some constant C. In [15] the value of C is rsported o be 3/2 but Jun Yang has

pointed out to us that Jic correct zaamb of Cis 1. This is because the ideal regular
tetrahedron has vertices oo, 7, wz, w°z where o is a pzém;zz*.; third root of 1 and 2

is & square root of /2. The cross-ratio is rice, z, e, wzﬂ, = —° uot @ and
Dol — %y = 3/2D,{wm).
it is geometrically obvious that
volf zxe’ah b= vol g—{}abz - “0*‘?6‘}@1 P ‘QE{T‘ "zé(}; - ‘y"{}%{i?{;‘m@}, 55}

i we average (5} over all x in PYC) the last three terms on the tight vanish, For
example, the average value of yf}éf?@p{,% is zero since by a unitary fransformation we
may assume that both ¢ and & have real coordinates, Conseguently vol{To,,.0 5 the
average value of vol{T ..} which is equal to Ha b, e by 4y and the definition of

]

Ha b, o), 0

2. The Pictures L,

The rational generators for K. of cyclotomic numb
pictures constructed from geometrically identical piece
iz Figure 2.1, This d?aﬁi"i is called o 'partial picture
These are the six edges lending off the top, botiom 2

(3’@
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Fig. 2.5

send counterclockwise starting at 11 o'clock, the labels on these six edges are:
xla,x3f x4, x5, x4, x4, (We invert the labels on the outward oriented edges)
The product of these six aiemeﬁiaw operations is trivial in the Steinberg group RITE S
of any ring R foranv ue K. Figure 2.1 is a geometric representation of the following
proof of this refation.

_ ()
Now suppose that u is a unitin R dﬁd fet & be any element of St(R) representing
the diagonal matrix diag(l, Lw u e = fi;,lu). Then we note that

xTix¥, = Dxiix}, D7 = Dlx aixﬂrig?”éf}_}-

If we write w = x4 x%,, then the relation in {0} becomes xiywxd xd, (DwD T

we ow sssume that u satisfes the relation T4 u 4+ i 4o+ u" = 0 {and conse-
guently 4" = i} then we can form a complete picture with no loose ends as indicated

Figure 2.2. The square labelled O represents Figure 2.1 and DEQDF
ire 2.1 with the edge labels conjugated by DY

igure 2.3 is an example of Figure 2.2 in the case n = 2. For 2 aesthelic roasons, we
‘e moved hall of the w = B*wD™* double line in Figure 2.2 to the fop of Figure
the two poinis g, b in Figure 2.3 represent 1 the two vertices in Figure 1.2
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—

I
Lot

Fig 2.3

Also we deleted the sup@gsefépis in x}; when s;hey

ele wi‘ of K,Z, where Z, = Z{u}/l + u+ -+ u""7)

since it comes from the 1cm space Lin; 1, 1L

?{};’ any nth root of unity £ # 1 let Z[¢] denote |

i

let fu Z,~» Z[£] be the ring map which sends i to ¢

arg 1. F‘égﬁ& 22 represents an

Lo We will call this element L,

the ring of integers in Q&) and

[
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THEOREM 2.4, The value of the Borel vegularor map on JAL,} is the imaginary port

of

b

n ditogé) =1 3

’ k=1

e

e
5

Remarks 2.5. {a) Bloch was the first to give an explicit comstruction of the
rationally nontrivial elements of K Z[L7. In fact, Bloch's elements seem {o be more
or less the same as ours {sse [1], [ 16} Bedinson [2] constructed rational elements
of Koy ZUET using Loday symbolk and outlined a prool that the value of the
regulator on these elements is L{E). This is im dileg{{) in the case &k = 2. A complete
proof is given in [14] and {4].

(b} Using the formula for the Steflel-Whitney invariant w, K37 — Z/2 given in
Theorem 7.7 of Part T it is fairly casy to check that L, (Figure 2.3} represents one of
the exotic elements of K. 7, ie, L, does not le in the well-understood index 2
subgroup Z/24 of K37 = 7/48 [13]. In fact, L, can be deformed into Figurs 7.6 of
Part I and thersfore represents a generator of K.Z. Also according to a transier
formula to be explained in a future paper f4L,) maps to an exotic element of K4
under the transfer map K700 —» K7 if and only if 1 is a power of 2. {We checked
this by direct computation when n = 4.} This implies that (L) is not divisible by
2 when nis a power of 2.

Proof. The picture for f:{L,} s the same as L, except that each » is veplaced by
&, Thus it suffices 10 show that the regulator map on L, is nim diloglu) when n s a
unit complex number # 1.

The first step 15 to determine the matrix labels for the various regions in L, These
are uniguely determined by the matrix 4 on the unique unbounded region of L. We
usually take 4 to be the identity matrix but here we will take it to be

gf/} —u 0 —z«s\i
A4 :% 0 10 ;
oh 9 1

The choice of the invertible matrix 4 doss not change the vahue of the reguiator on
L,. The reason is that 4 is the product of a nonsingular diagonal matrix 8 and an
upper triangular matrix T. Thus, by introducing circles of elementary operations
surrounding L, we can assume that the matsix on the region inside the added circles
and outside L, is equal to 4 B™*, Since the formuia for the regulator uses oaly
the projectivized columns of the matrices in each region this Is the same as labeling
this intermediate region with the matrix 4@ [,

Our cholce of the matrix 4 {given by Morse theory 1n Part B) has the property
that AE,{— 1} = DAD™! Conssguently, {
n pieces of L, becomes dentical and i

the value of the regulator on each of the
suffices to show that ¢, 40) = im diloglu}
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L.

for the matrix labeling of the regions in 2 given in Figure 2.6 for any ordering v of

ifwe take o 1o be the standard ordering 1 < 2 < 3, then we get exactly five nonzero
terms at the corners indicated in Figure 2.6, The other corners give zero for one of three
reasons, birst, i either of the two edges forming a corner is labelled x|, where { < j, then
it contributes nothing. Second, il the two edges are labelled x 2 for the same k then it
gives zero, The remaining cases are when the edges are labelled x%, and xj), where i = 2
or 3. In that case the corner contributes &+ pS{a. b, ¢} = + plab, be, ca}, where a. b, ¢
denote the columps of the matriz label in the corner region and the sign -+ /— depends
on whether x%, is on the clockwise/counterclockwise sides of the corner.

Most of the remaining corners give zero by Corollary 1.5 which says that
piix, v, zy =0 if two of the projective Hnes xy, yz,2x are orthogonal. The five
nonzero terms in 4,40} ars

feuy O —;z.\\g ;/E_ w0 —u
pSi —u i Aﬁjmg?Si —u 1 wz.sj
L A LA PO LI
ft—u 0 11
=p8l —u | i }z;}?{: X, ¥} in
. O o -1y

P
NI
& o £

e
L]
G omee Gl




piiz. y,b),
—pS{z, v.dY = pSip, 2 41,

pEb, v, d).

!/ 11 T
pS1 O 1 0 %
\“‘““‘f.i
where
%= (0, 1,0V,
o= {10, —uf,

de{—u —u 1Y,

KIYOSHI IGUSA AND JOHN KLEIN
{23

{see Figure 2.7y In the cases {1}, {5), we made umplifications by left unitary
transformations and diagonal right transformations,
The sum of these five terms can be computed as follows. By Proposition 1.7 in Part

1B, the sum of the torms {23, (3}, (4) gives

pS{v, b2y + pS{y,z.d) + pSiv.d by = Hd, bz} — 1{vd, vb, y2). {

The same formula applied o (5} gives

pS{a, v,ey = la b2y — Hya, vb, ye).

{Since yb is perpendicular 1o ab = be, the terms p

Finally by Theorem 1.4 we get

pSix, yv,zy = Ha, v,z — Ha, b, o),

Sty a,b) and pS{y, b, e} vanish
of

Orand {7)is Ha, b, ey + 14 5,
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L

4\

However, the unitary matrix diag{y, u, 1) transforms (g, v, z) to th, d, z and, therefore,
Ha, y,zt = Hb, d, 23, The sum of cur five terms is therefore sgual 10

4AQ) = Ha b.ej — lla. bc) = Dor{a.boc &) = Darlu, 1, o0, 0) = Dalu),

since ¢ L el ]

PART B: MORSE THEORY ON CIRCLE BUNDLES

in this part of the paper we will indicate how the pictures {L,) in Part A were
obtained from circle bundies over 5%, Since we are extracting an intricate algebraic
invariant out of something which is geometrically very elementary, this is not a good
example of the use of algebraic invariants in topology. However, we are hopeful that
this analysis will lead to 2 better understanding of those fiber homotopically trivial
but smoothly non- trivial bundles over 5% which are detected by the same invariant.
{See Theorem 7.1 below )

1. The Space of Positively Orlented GME’s on §'

It is easy to see that the space of Morse functions on the circle §° is homotopy
equivalent Lo a disjoint union of mfinitely many circles. However, i we allow cubic
singularities we get a connected space of functions and if we allow only ‘positive’
cubic singularities we get a contractible space of functions. With the definitions
helow this is eguivalent to saying that any oriented 87 bundie admits a fiberwise
‘positively orlented generalized Morse {unction’ which is unigue up 0 homotopy.
DEFINITION 1. A smooth function 25' — B is called a generalized Morse
function (GMF) i for every x € 8% one of the first three derivatives of [ at x is
nonzers. We say that [ is a positively orfented GMF (PGMEY {7(x) > { whensaver
Fey =[x = 0.

Let PGMF(S?) denote the space of all PGMFEF's on §7 with the C% topology. The
following drawing (Figure 1.2) Hlustrates a family of PGMF s on 5% The function /
15 the height function (the distance from the bottom of the page).

7
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We see in Figure 1.2 that a relative maximum & can be cancelled with a relative
minimum ¢ by 2 deformation of PGMEFson St {ie 4 path in POMEFET)) provided
that the local minimum ¢ is directly counterclockwise from b and there is at least one
other local minimum {dL

We will show that the space PGMF(S '} is contractible. The prool is based on the
following simple observations.

LEMMA 1.3, Forany f e POMF(S et FUFY be the space of oll g € PGMF(S ) 50
that {, g have the same local maximo, minima ond cubic points, Then FUJ) is convex
and thus contractible, O

This lemnma tells us that 2 PGMF on 5% is uniguely determined up (o “contraciible
cholce’ by iis configuration of critical points, le. the set of critical points together
with the data of which are local minima, maxina and cuble points. H x, <
X, < --- < x, are the critical points of [ in eyclic order which are nol local minima
then n 2 1 and the critical points y, of / which are not local maxima can be
numbered so that

X €Y <Xz LY <o <X, Ky, <X,y b 27 {f}

in cyclic order {and x; # y; for at lsast one i} Consequently, the x;s determine the
¥'s up 1o contractible choice.

As the function [ varies the set of x’s moves continuocusly and sometimes elements
appsar and disappear. This means we are taitking about the “topological poset” of all
finite nonempty subsets of 5% ordered by inclusion. This posst P is cbvicusly
contractible since it has a cofinality property, namely given anv finite collection
of clements 4; of P there is another B in P disjoint from sach A4, znd thus
4,2 Bu4d; 2B

It 13 not difficult to make this argument rigorous. We begin at the end with the
poset P

Let P be the space of all finite nonempty subsets of §7 topologized in the obvious
way so that it is a disjoint union of manifolds without boundary sach homotopy
egquivalent to 8% The nerve of P is the simplicial space &, P which in degree kis given
by all sequences of elements 4, < A4, € - € A, of P {ordered by inclusion) and
topologized as a subspace of P*7L For cach k > 0 we note that N, P is the disjoint
anion N{EPUNMP where NP i the spase of all sequences Ap <
A, << A, In P. This mmplies that the geometric realization [N Pl of N P 1
naturally homeomorphic to the nondegenerate realization of NP given by

[NMP = TIAR x NI9P/~

where only face maps are used in the identifications.

=

LEEMMA 1.4 The geometric realization | Py = |N Pz P of P s contractible.

]
Progf. If A e Plet P, be the space of all B in F which are disjoint from 4. Then
the elements of any compact subset K of P, are digjoint from 2 neighborhood Uy of
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[

37T
o F

Ain §'. in particular, there is an x &€ '\ 4 so that x is disjoint from each Be K. The
inclusions B< Buix} 2 x} give a null homotopy of the inclusion map
[N K| — N Pl Bince any compact subset of [N £, is contained in |N & for some
commpact K & P, this proves that [P, = ihic.

On the other hand n 1P 1= |P_, | so any finite intersection of | P 4{'s is contract-
ible. Bv induction on » it follows that any vnion of n > 1 1P ,1's is also contractible.
Since the {P,|'s form an open covering of | Pl any compact subset of | P 1s contained
in a union of finitely many | P,1’s. Since | P has the homotopy type of a CW complex

we conclude that it is contractible. ]

For sach n =t let @, be the space of all ordered pairs (X, YY) where X, Y are
subsets of §' of sive » satisfving the condition that the insguality {1) holds for some
ordering of the elements of A, Y and so that X # ¥, Let 0 = 110, with parual
ordering given by (A, VIS XN Y HEX g Ve Viand XX =¥\ Y Asin the
case of the topological poset 7, Q! = N ¢! is homeomorphic to I N?°¢ .

LEMMA 1.5 The geometric realization of (@ is contractible.

Proof. The proiection to the first coordinate gives an order preserving continucus
map p:Q — P and consequently a nondegenerate simplicial map N™p: N™Q -
N™P Foreach k> 0, Ni°p: NJQ - N}*Pis 2 homotopy equivalence and so |01 =
NP0 =[NP = P~ % ]

Now we need an explicit description of the elements of the geomsetric realization of
. Foreach nz ! let M, be the space of all tnples (X, Y, [y where (X, Y} 0, and
X oY =10, 17 is a function satisfving the property that f sends the complement
of XY to L We use the notation X,.Y, fo denote X/ "MOLY /D
respectively.

et M bhe the guotient space of E?‘Vfﬂ given by the identification {X, ¥ fi~
(XY MidX. =X, Y.=Y,and /1X, Y, =X, 0¥,

LEMMA 1.6, M s homeomorphic to Q1 and thus contraciible.
FProof. We will construet continuous inverse maps {F 11101 — M and G M — 101
Forcach k= 0let Fi A% x 87290 — M be given by

Flt X o, Vo) < - < (X, L) = (X, YV [

where /1 X, w0 Yy — [0, 1] is given by [i(z) = Z¢t; where the sum is taken over all { 5.8,
zeX, Y, fin particular fizj=1 i zeX,u ¥ One can check that the
maps F, are compatible with face operators and thus defing a continuous map

k1

For each k= 0 st A" be the subspace of 3 consisting of all {X. Y, /) where
j: XY — r{} 17 takes exactly & values vy > vy > - > v, in the epen mierva% {1
I .u M¥is a closed 31,%?%21 of M for all k. Let Got M* — A » N2°0 be

:7”
(D
~
e
e
Py

G X, Y, fy= 04X, Vo) < <{X Bl
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L= ¥ — Vi {‘;\3‘":: é,"v’kﬁgg :{}\?. X,= A& N j{‘_lil’gféj and

i
Yi=Ynr f v 10

Then G-= 4 G Mo 0] definss. o set theoretic. inverse for [F| and, thus, [F|.is.a
continuous biection. If a sequence. of elements 4, of M*~ M, convergss to an
clement B of M™~ M, where m < k then t converges io the boundary of A* and
GiiA:) coverges to G,0B). Since M, is locally compact, this means that & is
continuous and, hence, 8 homeomorphism M = Q] 7

i

THEOREM 1.7. PGMF{S") is contractible.
Proof. Let & be the space of all smooth maps /157 = R with the following
properties.

fay For each xef HOeither f(x)# Gor /x> 0
{b} There is at least one x € §' so that f{x] = 0 and {'{x) # 0.

We claim (hat PGMEFISY) = F =~ M = |0
By integration and differentiation it is evident that PGMF{S'} is homeomorphic
to R x #F,, where #, is the subspace of # given by the condition

2=
{ fix)dx =0, (2

I

ut g é formation retraction of F to F, 15 given by H{ [ 13x} = e/ {{x} where
of £y s given unplicitly by

i

| eTfx)dx = 0. 3)
Jo

Moie that the derivative of (3 with respect 1o ¢ 35 bounded below by
ks E o

7/ ram fom ™

mzﬂg\ ; max{d, flxn? dx, % minif, Fixi® dx %
el B ! ’

0 /
of 7 7

]

Thus (3} determines ¢ uniquely and < /1 is a continuous function of / by the implicit
unction theorem, This proves that ?GM% S = 7

We will now consiruct continuous maps « F - A and 1M — F o that the
compasition Bz is homotopic to the identity on F. Since M is contractible fr moust
aiso bo null homotopic

Foreach fe & let 8{ 7 be the minimum distance from the 3-jet { fix), /'{xy, /7{x)
of {to the subset J =0 x 0 xi{— ;zu} of B Then #fi>0and & F - M 5

sy
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continuous. Let o0 F — M be given by 2 /= (X, ¥, &) where

Z = < flzy < (/.

et
EI

Let 0 M — F be given by

BUX, Y, ()

xig X2 ez ze

\

= T] sindlc,— ) {1 sindy— o 110~ Mz + iz sin® 5z — 1),
&
where 2= XY and x, v, R are chosen o satisfy {1. Since fisd /) has the
same configuration of critical points as f, it follows from Lemma 13 that 8¢ is
homeotopic to the identity on F. Since M is contractible, we conclude that # is
contractible, il

2. Fiberwise PGMF’s on §' x §°

The proof of Theorem 1.7 {the contractibility of PGMF(S ')} gives a procedure for
constructing a fiberwise PGMYE on any smooth oriented circle bundk. This pro-
cedure will be explained for the trivial bumﬂa 51 % §' — 8% in this section and will
be applied 1o nonfrivial §-bundles over 52 in Section §. Trivial bundies give trivial
algebraic invariants so we will get only ‘;ziviai siefﬁems of KR in this section.
However, m discussion will make the next case easier.

Let pr E"7 1 s B" be a smooth oriented 5 '-bundle where B is 2 closed a-manifold.
Then we would like to construct a fberwise PGMF for £, ¢ a smooth map
[ E s 5o that [ is a PGME on gach fiber of p. The fivst step in the consiruction of
such a map is io find a systemn of smoothly embedded n-disks D, ,..., D, in F so that
pi D+ B is an embedding for all 7 and the inieriors of the 95 s cover B. Two
examples are given in Figure 2.1 for the bundle p: §' x §' — §*, The existence and
‘unqueness” of the disks B, will be proved at the end of the section. 1115 more or Jess
equivalent to the contractibility of |F| {Lemma 1.4} since the disks determine a

9

section of the | Pl-bundle associated to E.

The second siep in the construciion of /£ — R is to expand the disks D, into
configurations of singularities. The bi}ﬁﬂ{i&i‘v points of each B; should become the
cubic singularities and the interior points of each disk should be replaced by
max—min pairs as indicated in Figure 2.2. Note that each n-disk D, is replaced by an
n-sphere 5; whose mﬂ&ge in B iz the same as the image of D, In Figure 2.7 the
{formal} local maxima are indicated by the solid fines and the (formel) local minima
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by dotted lines, The diggrams in Figure
to B

Lising the homotopy equivalence (0 ~ ¥F ~ PGMF{5) we can construct fiber-
wise PGMFEFs TE—-R wéﬁ'f the fiberwise crittcal scis given in Figure 2.2, For
example over the points 1,,7,.1; in B = §' the functions for 2.2(b) are indicated in
Fzg e.2.3. The arrows in Digure 2.3 indicate the orientations.of the circles and.the. .
positions of the base points,

2 give sections of the [0 -bundie asscciated

The three Morse functions indicated in Figure 2.3 give three cell decompositions of
The corresponding cellular chain complexes with twisted coefficients i a
commutative ring R are given by

R: I 7*
z »i 0 g
s 5 s 1 h
g 2. GEE E) § {s “;}
y-u E; -:’.é{} 3; % i»éé Ez
R* I r:
) () )

where y e R” is the inverse of the holenomy of the cocflicient system over §°. For
example in £y, 0x; = y; — 4y sinee we must cross the base point of §' in the reverse
{clockwise} divection to get from x, to vy {H R is noncommuiative, we need to take
right -modules. Thus, dx; = y; — v3u would be 2 more accurate formula)

if we formally replace the mussing critical poinis x;, v; in {f.} and the missing
points x,, ¥, in (t;) we get the following 3 x 3 matrices.

f10 1) /1 —1 0\ /16 0
/%1:{ 0 1 0 } e B e N A LA e
g‘\_% G 1y —u O [ O w1

We note that sach matrix is obtained from the previcus matrix by one elementary
row operation and one elementary column operation:

Ay = E (- 1A Ept— 1), {4}

This is because the cancellation of two critical poinis say x;, v, eliminates exactly two
incidences, namely the incidences of x; over 3, and that of v, under x,. ( fassuming
that O < xy < ¥y < < X, < v, < 27w} Thus,

Al=E,_ ADAE L (1) {6}
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in the case [ = m, we have
Al = Emf ’_m{lgéﬁwﬁgé}e é,?%
and in the case { = 1, we have

=

B A B

if we take the holonomy Into account. We note that {5} is 2 special case of {8 and (4)
is a special case of {6} {with A" = A, A = 4,).

Thers is also a Morsg theoretic explanation of {8) which will be given in the next
section.

The four cubic points in Figure 2.2{a) correspond to eight elementary operafions

Si¥zix zj 51} 124 {5

where x}; = x;{r} denotes the column operation A =» AE dr) and yj; = y;,lr} denotes
the row operation A — E {ri4. At a "birth’ point where a pair of critical points is
created, we write the y-term first and at g ‘death’ or canceilation point we write the x
term first. Then 1f is clear that the operations in (9} ali canesl,

The same procedure applied to Figure 2.2(b} gives the sequence of operations

— 3

P .--i,-—i u
FiaXar¥ez i3

X3z ¥

lJ

- zs
i «‘s* 12X

1 V52 {1

N -

3¥

wb‘:
1\)H

a¥

Since these are slementary operations which we apply to the diagonal matrix
D = diagll — u, 1,1} to give back D, we get a matrix eguation of the form
EL. . E\DE,. . Es=D. Thus, the product of the elementary matrices (D7 ELD) .
(DTIEUDYE, L E, is the identity matrix. In other words, the formal product

eyt el —ay ] ufl - R T T 6 BT e Sy WU SN T S ¢
Ao Xy 3‘.,'33)&3} -‘“zﬁ :“13 xaz,ﬂyzgklz,\_gziiglgl {E§¥

gives an element of K,R. By the ‘unigueness’ of the system of disks {I);} as proved
below, this is an invariant of the bundie §' x §* — 5! and therefore must be trivial,
as in {9,

PROPOSITION 24. Let B be o smooth closed n-manifold ond let mE— B be a
smooth bundle with positive fiber dimension. Then there exists a finite colleciion of
disjoint smoothly embedded n-disks Dy, ..., D, in E so that p is an embedding on each D,
an d *zﬁ n*{ D3} is an open covering {}f B, Fyrthermove, given another such fomily of
\ there exists ¢ third fomily (D]} 5o that each D} is disjfoint from each ) and
A;’s‘z}s?z eadz E}j.

Remgrk. The family of disks (D[} allows us to go ‘continuously from {D,} to {D}}
by first adding the new disks D7, eliminating the old disks, adding the disks I} then
eliminating the disks ). This creates a collection of disjoint embedded cvlinders
(D% % IVin E x T whose interiors cover B x {0, 1}, By rounding ofl those corners that
He over B x {0, 1), this gives a family of digioint éms and half disks in E » 7 which
agres with the disks i;&-;‘ { x Dand B x 1

&
r
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Proof. First choose not necessarily disjoint disks 5 in E so that thelr interiors
cover B Then we replace each Dy by a coliection of disks which are disjoint from
each other and from each I,

Let m be maximal so that D, 15 not disjoinl from the other disks. Let
U= plint D). Then p~ U is diffeomorphic to U/ x M, where M is the fber of
Sos B Lgt- Ko-S-B-be-the complement of the-union of plint B3 dor all ¢ 5 m Then
K iz compact. For each x€ K, there is a y € M and a small disk neighborhood Nix}
of x in U so that N{x} x yis disjoint from all disks U,. Choose a finite subcovering
{N(x;)} of K. We may assume that the corresponding elements p; of M are distinct.
By replacing the disks D, with the disks N{x;} x y,, we decrease the number m. The

proof of the relative case is the same. ]

Eg

3, The Algebra of Cubic Points §

As we saw in the last section, the incidence matrix of a PGMT on §' changes only at
cubic points. We observed in (4}, (5) and more generally in {6), (7}, (&), that this change
in the incidence matrix can be expressed as two elementary operations. Howsver, the
same changes could also be accomplished by different sequences of clementary
operations. In this section, we will do Morse theory on higher-dimensional manifoids
1o explain why a cubic point corresponds to exactly two elementary operations. In
the next section, we will examine the algebra of PGMF's on §' with two cubic
poinis. Such funciions occur generically in two-parameter families of PGMF's on §°
and, thus, on fberwise PGMP s op 5i-bundles over 52

I/ iz 2 smooth function on a smooth manifold M, then the positi
suspension of [ is defined 1o be the map o, (/1AM x B — R given by o { fHx, v} =
fixy+ y* The function [ is stebilized by repeated suspension (/) = ot eT{f)
where a1, m are both large} Since algebraic invariants such as the Whitehead torsion
and Reidemeister torsion of o2 ¢%{ ) depend on the parity of 1, we usually take n o0
be even.

£ /e PGMF(S") is stabilized then the local minima and maxima of { are replaced
by nondegenerate critical points of s{ /) of even and odd indes, respectively, and the
cubic points of § are replaced by birth-death points of 3{ /) where the function is
given locally by

e fRegativg

¥ Bthom
AV 3 2 L2 ~
sfMxy=x3— }__: i+ 3 xi+C (i3
j=1 J=ntl

where (15 a constant.
Isolated birth-death pomnts occur generically in one-parameter families of func-
tions and they have the impertant well-known property that they can be made

‘independent’ of all other singularities {except local maxima and minima) (see

(36,911 We recall that twe cnitical points of a sinooth Tunclion g are independent f
neither s ‘multiply incident’ under the other where muliiple incidence i= the transitive
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relation generated by ‘incidence” and x is incident under y if thers Is a rajectory of
the gradient of g which goes from x to 7.

The purpose of making birth-death points independent from other critical points
is g0 that the nondegenerate critical points which converge and cancel at a death
point or are created at a birth point will be incident only to each other. Then at the
MO
elementary expansion or collapse, respectively.

The reason that birth—death points can be made independent of other eritical
poinis is that their stable and wnstable manifolds are both disks. These are defined 1o
be the subsets 8, U of the level surfaces L = g~ {

{r —gyand L, = ¢ Ye + &) which
are incident under and over the birth—death point respectively {¢ is the critical value

S={x,n0eR xR xR x<0z=0,glx, n.2) =¢ — 2},
U={{x, n20eR xR xR*x20:=0gx vz =c¢+z}.

Ome can check that 5 is an nedisk and U is an m-disk. It follows that there is an
wsotony of § in L_ which makes it disjoint from any closed proper subset K of L.
{assuming that K does not contain the component of L_ containing 5) or,
eguivalently, there Is an isotepy of K in L_ moving it 1o a subset K’ of L_ disjoint
from 5. If we let K be the set of all points in L. incident over any eritical point of ¢
which is not a local minimum, then K will not contain any of the components of L.
and any lsctopy of K in L_ can be accomplished either by deforming the metric as in
{81 or by replacing the gradient of y by a ‘gradient-like vector field’ for g asin {6}, In

either case Yy is replaced by V'g. An example 8 given in Figure 3.0 where x 5 a
birth-death point and y is 2 saddle point incident under x.

In Figure 3.1, 8 is a I-disk and U is a single point. The cntical pont y ol g 18
incident under the center of 5. But this point can be deformed to a point K7 digjoint
from 5. We note that during this deformation, K must ¢ross the boundary of 5.

O
I

% & T

i
Ll
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A higher-dimensional example is indicated in Figure 3.2 where L_ is throe-
dimensional, §is o 2-disk and K is 2 l-sphere, The dotted line indicates the path that
K 5 lollows 1n the isotopy. This second example is the double suspension {5.o_)
of the first example and the first example is the negative suspension of a one-
dimensional example,

A birth~death point x oceursing at =0 in 2 generic one-parameter family of-
functions, g, is a point at which two nondegenerate critical points x7, x of g. for,
say, 1 > 0 come together and cancel This is indicated in Figure 3.2. The important
feature is that the stable manifold S(x7 )< L, of x{ is a sphere which convergess 1o
the boundary of 5{(x} as 1 goes to 0. (L, is a level surface of g,.) Also the set of points
i in L, which are incident under either x; or xJ forms a disk with 8D, = 8ix Y0
that D, converges 1o S{xyast— 0.

If there is a saddie point y incident under x as in Figure 3.1 then it will aiso be
incident under x {but not under x7 ) for 7 close to 0. This is indicated in Figure 3.4.
{The corner set (05(x}) is rounded off because as Six, } converges fo S{x) it is
decreasing in size with infinite velocity) For ¢ close t0 { we need to deform X 10 a
position K’ which is disjoint from S{x). But this necessarily creates a crossing of K’
with 8{x,} at some value 1y of ¢ near §. This is ap incidence betwesn two critical

m...mwwmm%

s
e
L
"
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{r< 3} {r=10) {f =0}

poinis y, xy, with the same index and therefore the incidence matrix changes by an
elementary cperation,

Going back 1o the case of PGMEPs on §7, consider the typical deformation given
in Figure 3.5. After one or more negalive suspensions. the ma,zdf:ﬁc:; of v, under x, at
¢ = () can be eliminated at the expense of introducing an incidence of 3, over ¥, at
some ¢ > 0. This corresponds o & row operation of the form v, for some r in the
coefficient ring B. After one or more positive suspensions of £, the incidence of x;
over x, at 1 = { can also be eliminated but an incidence of x, under x; will appear at
some time ¢ > 0. This corresponds 1o 3 {:@Eamﬁ operation of the form x3; for some
in B The cloments 7. 5 of R are uniguely determinad by the equation

by

A = g[z{f};‘é?zﬂi%}’

where 4, 47 are incidence matrices of £, for ¢ = 0,1 < 0, rezpectively. This is 3 speclal
ase of {6} above.

4, The Algebra of Cubic Peinis 11

sow study what happens when a PGMF on S has two cubic peints. Such
functions occur generically in two-parameter families of PGMF's on §° which we
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consider to be deformations of one-parameter families. With this interpretation the
coincidence of two cubic points is actually a crossing of two cubic points as indicated
in Figure 4.1.

At first glance there are three possible cases depending on whether the two cubic
points are both birth points, both death yemts or consist of one birth and one death
pcm% However, i}aese ‘ihrsp cases are all sgui
into each other by a change of coordinates in the two 55336"121911412 parameter space.
Therefore, we consider only the case when a birth pomnt passes a death point.

There are essentially two cases of this depending on whether the two cubic points
are ipcident when they cross as in Figure 4.1 or they are nol incident as in Figure 4.2,
However, in the case of Figure 4.2, the glementary {)p@ratieﬁs carrespond%ng 1o the
) hublc 33{}1;%9 commute. For example we get yiixzixisyi, for 42(3) and
Xisyiayizxzs for 42(b). Geometrically, the deformation in Figure 3.4 is performed
for the two cubic points separately and they do not interfere with each other. Thus,
we will not consider this case further.

Going back to Figure 4.1, it s very important o know the exact order of the
critical values. This is shown in Figurs 4.3

(a) ()
s T T s, T

alent, since they can be chmsformeé -
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x A

Fig. 4.3
Evidently the ordering of the critical values is
Jim < flra) < i) < flys) < flxg) < fixa) {13

The position of the critical values of x, and y. cannot be determined but they are
irrelevant,

tn the level surface betwesn x, and y; the points incident over X,, ¥, and those
incident under x,, vy, are both indicated in Figure 4.4(a} for the one parameter family
of functions given by Figure 4.1{a). When this family of functions s deformed o
4 1{b} these sets move 1o the positions shown in 4.4{c).

{a)

Fig. 44
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When the deformation 3.4 is performed on the two cubic poinis in 4.1{a), dingram
4.4{a} s deformed nto 4.4(b}. As required, the two cubic points are no longer incident
to the other critical peoints, We must now deform 4.4(b) into 4.4{c} while maintaining
the independence of the cobic pomnts. In order to do this Sy, must cross Dix,) at
some point since the boundaries of the two bands are linked. In other words, there
must be an incidence of y; over x,. 5ince the index of vy s one more than the *ﬁdﬂX

“of x,, this is an exchange poini. In (6], it was shown that at an exchange point the
sequence of elementary operations corresponding to a one-parameter family of
functions changes by an ‘exchange relation” which is defined as follows,

DEFINITION 4.5 Let 4 be an »n x m matrix with coefficients in 3 ring B and
suppose that the gp-entry of 4 is zero. Let v e R. Then the exchange relation Z7,{4) s
the sguation

ALLE drag = TR Lo )

i.e. the sequence of clementary operations Hx, {ra, 31 v (— a,,0) s trivial on 4
For example in the case of 43(b), ¢ wh ;ﬁmdence mairix is

/1 =10 o

lo 1 —1 o
A=l00 1 -1

lo o o ¢

Since fix; = O we have the exchange relation Z5:04) given b

gt

AE s Bl —ri= Eapirii s —rlA (14}

on the matrix 4 the sequence of clemeniary operaiions
rivial,

n [6] that {m the present notfation) an exchange point where v, is
ads to a chan gz in the sequence of elementary operations gzwzz by
relation £, where v is 2 unit in R determined by the b
‘o ou o7 ? depending on z@-‘%ei’“‘ler we do or do n
clockwise from 3, 10 x, in 5.} Indeed, we will see that the sequence of

gEo
=
ot

Cross ?.L;c Dase

clementary operations corr Qspcnd%ﬂ;_, to 4.2a) and (b} as given in {13) {16} below

i

differ by the exchange relation ¥4,

s
LN
Ry

if we let A be the matrix given above and B, €, D the matrices given by
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then {15}, (16} indicate two seguences of elementary operations that convert B into €
and the matrices 4, B, €, I are incidence matrices for the Morse functions in the four
regions in the parameter space separated by the parameter values of cubic singular-
ities as indicated in Figure 4.6,

1o -1 0 /1100
610 9 fo 1 01
00 1 —t  |}= oot o
A - ‘\\ ”;

1o -1
i RF e

(010 0 \

:%@@3{} %

looo 1|

l! H

Y /
Fig. 4.6,

All four matrices have the property that their (3, 2)-eantries are 0 The exchangs
relation Z253(X) gives {14) with r=1 for X =4 and {17), {18}, {19) below for

X =B,CD
BE;:(1jEz44— 1) = E55(1}B, (amn
CEa3(1) = Ey5{— DE:(1)C, (g%
DE, (1 = E;{1iD. (19)

{a)

o)

{c)

{d)
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In each case, we used Steinberg relations first among the x,;'s and then among the y;/'s.

The algebraic deformations given above can be represented by the ‘partial
gengralized pictured’ given in Figure 4.7, Fortunately all four diagrams are eguival
ent. {They can be deformed into ecach other) This is hecause they involve only those
lementary operations and exchange relations which are ‘compatible’ with the
rdering given in {13} above. The definition of compatibility 15 given as follows.

D

&

DEFINITION 48, Let < be a partial ordering of the set {x,,.. Vi Vot

MR 3 I
Then the 1 x mmatrix 4, the column operation x},, row operalion yi; and exchange
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¢
Py

relation 7' are said to be compatibie with the ordering < ifl respectively,

For the partial ordering (13) the compatible operations-are xfy where 2 < o < b <y
v where | < ¢ <d € 3and Z5,. A matrix A is compatible with {13) Tand only i 45, = 0.

We note thal any compatible operation op a compatibie matrix resulls in a
compatible matrix and all elementary operations involved in a compatible exchange
relation are compatible assuming we have a fixed partial ordering.

5, The Hosf Bundle 8° - &

We will now construct a fiberwise PGMF on the Hopf bundle p: §° - §%. As before the
first step is to consiruct a system of embedded disks. This is llustrated in Figure 5.1.

The first disk [, appears as a spiral since it covers the peoint at infinity in
§? = R2u {ol. The image of the three disks in §° is given in Figure 5.2 where pD,

=
S

A
Tt
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is the complement of the innermost oval The numbers §, 2, 3 in Figure 32 indicate
the number of times each region in 87 is coversd by a disk.

The cross-sections of Figure 5.1 at the levels (a}-{(hi} indicated in Figure 5.2 are
MHustrated in Figure 5.3, The corresponding configurations of critical points are
indicated in Figure 54,

{al (b

&,
Dy
Dy

{c} {d)

D, D,
D, D,
{e} if3

{h

5]
Sl
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<
i
© (@) S
fe) PR &
(g (b}

Fo

ks

54

rm

As in Section 2, each cubic point on the ith asphere leads o one column
operation x,; and one row operation y,. where &k are the numbers of the spheres
directly counterciockwise and clock wise from §; at the cubic point. Thus, each

circle 1n Figure 57 leads tc two circles of clementary operations as iflustrated in
Figure 5.5. At each of the six crossings of cubic points we insert one copy of Figure
4 ey, the simplest of the four equivalent choices Tor filling in the diagram st these

points.
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b
L
L

b

e
in
L

According to the procedure explained in Section 2, the diagrams {¢), (dy ey (fvin
Figures 5.3 and 54 lead to the following sequences of clementary operations which
form the corresponding cross-sections of Figure 3.5.
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T
Y32X51 ¥ias

(f

Except in the case u =1, the cross-section (g) does not have a well-defined
seguence of elementary operations associated to it since the critical poinis on S, pass
through ihe base poinl (the top und bottom horizontal lines i the rectangles in
Figures 5.3, 5.4). As a consequence the elementary operations labeling the solid lines
do not match below the cross section () in Figure 5.5 {unless u = I). Aside from this
problem we are, as usual, using our smooth edge’ convention which says that ali
portions of any smoothly embedded curve have the sams label except at exchangs
points.

The probiem with the labels in 5.5 can be attributed to the fact that the logal
coefficient system on the circles doss not extend to ope on b = $% unless u = L.

If we want a nontrivial tocal coefficient system on each circle which extends 0 E
we must iake the lens space £ = S¥/(Z/n) = Li{n; 1,1). Then we can take u to be any
pth root of 1 in any commutative ring R. {Noncommutative rings work if we take
right R-modules.) In this case we can again find a system of three disicint 2-disks as
indicated in Figures 5.6 and 5.7 for the case n = 3. These diagrams are analogous o
Figures 5.2 and 53

In Figure 5.7(cy and {d} the three pieces of the disk D, are labelled Dy, uDs. v D5
since, .2, the second plece actually belongs to the next lower fundamental region.
This allows us to conneact the three pieces as shown in 5.7(e). When the basis elements

a
-
.

x3. vy are replaced by ux,, uys then the incidence matrix A4 with respect to the new
basis is the same as DAD ™ with respect to the original basis where D = diag(l, Lul
Thus, e.g., the sequence of elementary operations for 53.7(d} is E{DED™ YWDREDRTH
where £ is given by 5.4(7) above. If we expand this, we got

1]

k)
[
e
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WMost of these terms cancel 10 give

I T N A
13 K31 Fes

{21

which ig trivial since w? = 1.

We note that {21} is the sequence of slementary operations for 3.7(1}. Geomet-
rically, the deformation 5.7(d) - (e} = {f) — (g) - () has no crossings of cubic points.
This is why algebraically the terms in (20) all cancel without using any Siemiﬁazgw
exchange relations.

Since algebraically diagram 5.7 is # copies of 3.3, the resulting picture should be »
copies of the picture 5.5 conjugated by D' and connected together as shown in Figure
5.8 where P is the portion of Figure 5.5 which lies between the cross-sections {cj and
(f}. Note that Figure 5.8 can be deformed to Figure 5.9 since the lines at the top do
not involve the index 3 so they are unchanged by conjugation by L. To get a true
picture of an element of KR we need to eliminate all row operations in Figure 5.9,
By the n-fold symmetry of Figure 5.9 this can be done by working with Figure 5.5 i
we arg careful,

[
e

3 g
H H [ ] H
P DPD plept
. %\%\ J 1)
Fig 38

i $ 543 H Sgéii H H
=i —1 -
P DFPD o lepte

PR
-l

Fig. 58
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]
Lh
W

6. Elimination of Row Operations

in this section, we will show how Figure 5.9 can be deformed 1o give the picture L, of
Part A, We begin by summarizing the results in [7] related to the elimination of row
operations in a ‘generalized picture’ involving both row and column operations.

A generglized picture for K5 is a one-dimensional planar diagram in which the
regions are-labeled with elements of GL{R); the edges are oriented and-labelled with'
row and column operations so that the matrix labels on the two regions separated by
an edge differ by the clementary operation labeling the edge as indicated in 27

e oadl 41
PR B g
|

i AT} {22}
e XE

At each vertex the labels on the edges converging to the vertex, when read counter-
clockwise, should give either a Steinberg relation among x; /5 or y;’s {or an inverse of a
Steinberg relation) or a commutator [x,, ¥$,] or an exchange relation. All three occur
in Figure 5.5, (Noncommuting Steinberg relations among the ¥i/s ocour in Figure 4.7.)

A local deformation of a generalized picture is given as follows. First we choose an
open subset of the plane in which all the labels are compatible with a fixed partial
ordering of the set {x,, ¥;, xa, y2.... } as defined in 4.8. Then we change the generalized
picture inside U so that it is still compatible with the chosen partial ordering. {We must
of course keep it the same near the boundary of I/ so that it matches the rest of the
picture.} & deformation of a generalized picture is a sequence of local deformarions.

There are basically three kinds of local deformations involving exchange points.
They are:

Type I Zi{A}+ Zi(A)= 2, + s(A)

by # fe2) B E
}Jﬁ&? Z?"x’ XP *® };g ris F:
\ q /
el . 3
¥ Hrsh iy frezin
) px x 3
b B = v P&
Y Ly Tpw

TE

Typella Zl A= 2 (4Axl) iz
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Type [la Z7,(Ax,) = Zi{A) + ZTAY

There are alse dual versions IIb, IT11b of Ila, 1f1a with row operations given by

{1ty Zi (Aye= 20,3541 iisg
(I Z0 iy fA e 204+ Z0{A)

The main result about gensralized pictures is the following theorem which was
proved in [7] in the special case when R is an integer group ring.

THEGREM 6.1. Any generalized picture can be deformed into a plcture without row
operations. Furthermore the element of KR represented by the resulting {true} picture
is well defined,

Remark. This theorem doss not say that the group of deformation classes of
generalized pictures is isomorphic to K& It is instead isomorphic to K R » KR,
The K, R-invariant is given by the matrix label on any region. The group operation
for deformation classes of generalized pictures is given by disjoint union of diagrarms
and direct sum of matrix labels.

Proof. We give only the conceptual outline of the p% cof. For details of the deforma-
tion removing the row operations see [7], Theorem 9.3, This step works just as well for
any ring R. For details of the unigueness of the resulting element of KR, see {161,

First we note that any permutation matrix P gives an automorphism of the set of
deformation classes of generalized picturss by changing all matrix labels 4 to PA
and by conjugating all row operations by £ Therelore we may assume that p = ¢ for
a:fach sxchange relation Z], which occurs in our generalized picture L.

72 alse ohserve that there is an action of K, B on the group of all deformation classes
of generalized pictures given by direct sum with the matrix labels. Therefore we may
assume that the K, R-invariant of L is trivial. In fact by local deformations at oo we may
assume that the unigue unbounded region of L is labelled with the identity matrnix.

Mext we claim that we can deform all the exchange relations in L so that they osour at
the identity matrix. (This is Lemma 9.1 in ;_"?_g } To see this let Z7,04) be an exchange
relation in L. Then, since p # g and A4 is trivial in K, A, there is 2 sequence of row and
column operstions which commute with 2 asin Ia, b above and which transform A
into {. One can then perform these operations one at a time by creating @ ¢ircle of
elementary operations next to the exchange pgém a;@ﬁi then pass the oxc ange point
through the circle to its interd aly

e
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Zia) =

g::g ?‘%}

Finally, when all the exchange poins are exterior we can exchange the remaining
row operations by ‘sliding them out’ to the unbounded region and exchanging thern
up when they get there This is merely the two-dimensional version of the deforma-
tion

Epo EyIFy . Fp=E, EJJEF F.s>1E, EF, . F.

which slides any sequence of row operations into column operations one at a time by
gxierior exchanges.

To prove that the resulting picture gives a well defined element of K, R we use the
filiered complex model for QK(R) given in [10]. There is a Waldhausen category
AR} whose objects are filtered R-complexss with certain additional structure. A
partial ordering of the set {x;,..., %, ¥1...., Vo) and a compatible m % » matrix 4
gives a flitration for the chain complex - — 0 — R — R™ with boundary map given
by A. This means that every generalized picture gives a map $% — |x.# "R} where
x AR} is the category of weak equivalences among acvelic filtered chain compiexes.
é wetuaily the natural map sends §° to something which continnes ix AR as a

deformation retract.) By ‘rigidity’ of the basis set (Le. we are not allowed to permute
the basis), we are actually in the fiber of the map [x# *{R}| — (x# (R} This maps to
the homotopy fiber of the map

xS A HRY| -

xR
This homotopy fiber, sav F, is homotopy equivalent o

{37 1hs

A (RY = DK(R),

where K{E} denotes BGL(RY" = K R,

It now remains to show that the map from K, 7
from picturss fo generslized pictures 1o w,F by the construction above is an
momorphism, This fo !i@s«(s rom the fact that picture are f:%flm"‘f"i‘% of 7y of the
Volodin model for QK{R] and the map in guestion is induced by a map
QK(R) — = QK(R) which is equivariant with respect to an appropriate free action
of GL{R). Then we invoke the obvious fact that any GL(R} equivariant map beiween
two models for QK({R) must be a weak homotopy equivalence. (This follows by
induction on the Postnikov tower of ZK{RV/GL(R) and the universality of each of its

Postnikov invariants) i
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We will now perform a deformation to simplify Figure 5.5 Since the tabeis below
the cross section {f} do not match we will only consider the portion of Figure 3.5
above the cross section ()

The first step is to move the y3; edge down until itis a straight line connecting the
exchange points Z3{ and Z3¢. This is allowed since y%, commutes with v%, and any
Next we move the two exchange points Z3 and 77/ down through the x%; edge
by a type IIa deformation. This produces a single £ 5+ exchange below the x3%; line
as indicated in the lower portion of Figure 6.3,

The third step is to move the y3; edge up above the xi, edge. Then the two
exchange poinis Z34 and Z1; can be pushed up past the x3, edge by another Lype
TIa deformation. Figure 6.3 shows the result of these four local deformations.

Xy
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{b;

(o

Fig. 64, Cont.




264 RIYOSHI IGUSA AND FOHN KLEIN

nNow we want to cancel the two exchange poinis 217 and 54, To do this we first
push the yi, edge down so that it forms a straight line from Z7{ 1o Z34. Thisis a
combination of deformation b and commutation of yi. with various x;;’s. Next we
push the Z 3/ exchange down below the i, edge by a type 1ib deformation. This

gives Figure 6.4{ah

To get from 6.4{a) to 6.4(b) we do a type Ila deformation on Z7; and a type 1la
deformation on Z34. We also redraw the [x%,, x1.] Steinberg relation for aesthetic
reasons. To get from 6.4(b) to 6.4{c) we do a type Ila deformation. If we now insert

6.4{c) back into 6.3 we get Figure 6.5,

. -
Yia 2y Fia

=i -yt g iR
Z 13

N )
A

|

J

s,

) T
-1 8 -3
3 Z 4 Z gy
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if we deform Figure 6.5 by an isotopy of the plane and inferchange the positions of
x1, and xi, as indicated by the double arrows we will get Figure 6.6 which is almost
the same as Figure 2.1 in Part A

When Figure 5.5 {the portion above ({}} is deformed to Figure 6.6 the entire picture
{Figure 5.9} is deformed to Figure 6.7. We can now sec that there are two strings of
-exchange points which cancel by deformations of type-Leines b b oo " T h = (0
This deforms Figure 6.7 into the picture L, (Figure 2.2 in Part A). To make a perfect
match we sheuld rotate each square in 6.7 counterclockwise by 7/2.

7. Higher Reidemeister Torsion

The association of D,(&) to the circle bundle Lin; 1, 1} §7 is a special case of 2 more
general construction called ‘higher Reidemeister torsion’. Instead of §7% let M be any
smooth closed manifold. Let p be a unitary representation of #, M whose image is 2
finite subgroup of Ufn) and suppose that H4(M, C" = 0, ie. the homology of M
with coefficients in the flat C”-bundle corresponding to p is frivial. Suppose that
M > E — 5% i a smooth bundle so that the unitary representation p of m, M factors
through , £. {This is the same as faking an element of 2, DIF(M ) when k =2 or
of 2 certain subgroup of 7, Diff{Af) when £ = 1}

Then there is an R-valued invariant t{E) which is additive (e 1 n,,  Diff(Af )} —
R 15 2 homomorphism on s domain)l In the relative case {when M is a mani-
{old with boundary} the known resulls from pseudoisotopy theory tell us that
detects fiber homotopically trivial but smoothly nontrivial bundles over every
even dimensional sphere. In the case of bundles over 57 the argument goes as
follows.

We take a smooth manifold M of sufficiently large dimension (=6 with
w M =Z/p and 7w, M =0, eg M =L x] where L i3 the lens space L=
Lip. 1, L 1} = §7/(Z/p) where p is an odd prime. Then by the surjective stability
theorem ([7].797) =, %(M) maps onlo Wha{Z/p)/torsion = K Z[F/pl/torsion =
B /torsion where %A} is the concordance space

Gy = Diflid < I ral M x QUM x ]

Comsequently thers 18 an clement of 7, %47} which is detectad by © which is the
composition of the Borel regulator map K0S — B with the map described above,
{In fact, we know from the results of this paper that we can got © = plh &L

Since M is an even dimensional manifold which is sufficiently tangentially trivial
{in this case orientable) the invelulion on 7, %M ) given by ‘turning Morse functions
upside down’ acts as the negative of the inverse conjugate transpose on K, O(F) and
thus preserves the invanant 7 by Corollary 7.3 below, Conseguently ws can construct
an element of sy DafliA » Il M x 1)y which is detected by 7 {in fact with
T = 2plh,{I)). By pasting this into the closed masnifold L x 87 we get a smooth
bundie over 5% with fiber L x 52 detected by 7. This proves the following,
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THEGREM 7.1 Ler L=Li{p, 1,1.1}=58A
pim L % 8%y = Zip— Ul be any ;zsmm:zaa’ map. Then there is g smooth bundle
E s 57 with fiber L 8% and n, E = Z/p so that itz higher Reldemeisier rorsion
inpariant ®EY is nomrivial. Furthermore E is fiber concovdant to {and o fortiori

v}y where p is an odd prime. Let

fiher homotopy eguivalent to) the trivial f}ma?é Iox Sz x Szﬂ 82, ie there is 4

smooth-bundle ¥W.— 5% with. fiber L.x 82.x.].so that 0W_ is fiher. diffeomorphic io..
ETIL x §% x 5% O

The calculation in this paper shows that this invariant also detects circle bundies
over §7 which, of course, are classifled by fiber homotopy type.
THEOREM 7.2, The higher Reidemeister torsion of the 8'-bundle Lin, 1, 1) — §
al (&), where £ is the Inverse of the holonomy of the coefficient sheaf over each fiber,
Remurk. In order 1o show that the invariant in this paper is a special case of the more
general higher Reidemeister torsion of [10-12] we need an equivalence between two
different models for GX{E) as outlined in the proof of Theorem 6.1 1
Since §7 is an oriented closed odd dimensional manifold this theorem has the
foliowing K-theorstic coroliary {(although the corollary could also be obtamed by
direct computation)

COROLLARY 7.3, Lei 1 be the invplution on K F{E7 given by inverse conjugate

feanspose on matrices. Then 1= — 1 on K218 rorsion.
Proof. Let £ — 57 be a circle bundle and let g B — U{1} be a unitary r@;ﬁressﬁ—
tation so that (£, p) represents a nontrivial element of K 70 torsion. Let [T E— &

bea PGMEF on E. Then —/ s alse a PGMF on £ i we reverse the orientations of
all the fibers. Conseguently the element of K 7{£] given by —/ is the same modulo
torsion as the one given by f. Since §' is odd dimensional and orientable the
involution of ‘turning the Morse function upside down’, 1e. replacing / by -~/ acis as

—t on the assoctated K.Z[8T-nvariant. {Ses [5] for more detalls about this
involution} .

i
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