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INTRODUCTION

There is a linearization map L: *+ — Z of functors with smash product (FSPs)
inducing the Hurewich map S° — HZ on the associated ring spectra [B6, W|. By
naturality of the cyclotomic trace map from algebraic K-theory to topological cyclic
homology [BHM], there is a commutative square

A(*) _tre o TC(*

.

K(Z)-"~TC(Z).

A theorem of B. I. Dundas [Du] asserts that this square becomes homotopy cartesian
after p-adic completion, for any prime p. Hence to compute the (p-completed)
homotopy fiber of L: A(x) — K(Z) it suffices to determine the homotopy fiber
of L: TC(x) — TC(Z). This approach has the advantage that the homotopy
types of both these spaces are known, whence only the problem of describing the
linearization map between them remains.

The aim of the present paper is to give such a description for odd primes p in
the range of homotopy groups where stable homotopy consists only of the image
of the J-homomorphism, 7.e. up to the connectivity of the cokernel of J. The first
nontrivial element in the cokernel of J is a class in degree 2p(p — 1) — 2. Thus we
wish to describe elements in the fiber of L up to degree 2p(p — 1) — 3. We call this
the “image of J range.”

We will prove the following result.

Theorem. (i) In the image of J range, i.e. through degree 2p(p — 1) — 3, the p-
primary homotopy groups of the fiber of the linearization map L: A(x) — K(Z) are
concentrated in even degrees, and satisfy

F, ifk(p—1)<n<kpfor some2<k<p,

0 otherwise.

Ton hofib(L) = {

(ie) The classes in degrees 2n with n = 0 mod p — 1 are the image of a natural
map BSG — hofib(L), and map to zero in man A(*).

(ii1) The remaining classes, in degrees 2n with k(p — 1) < n < kp, inject into
TonA(%*), onto direct summands.

Typeset by A S-TEX
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Corollary. There are nontrivial classes in Kopt1(Z) withn =0 modp—1 and
0 < n < p(p—1) mapping to the classes of order p in mwo, hofib(L) under the
connecting map QK(Z) — hofib(L).

There are torsion classes of order p in Tan_2P(*) when n satisfies k(p — 1) <
n < kp for some 2 < k < p, which come from wyn A(*), map to zero in Kan(Z),
and are detected in . TC(*).

Here P(*) is the stable pseudoisotopy space of a point.

1. REVIEW OF TOPOLOGICAL CYCLIC HOMOLOGY

Hereafter let all spectra be implicitly completed at the odd prime p. We will use
infinite loop space notation for the connective spectra that appear.
By Theorem 5.17 of [BHM] there is a homotopy cartesian square

TC(x) —2> Q(T4CP™)

IB\L ltrf51
1-A

Q%) —> Qu($")

Here A, is the pth power map, trfg the S'-transfer for the covering ES' —
BS', and Qy(S°) denotes the zero—component of Q(S?). Similarly we will write
Q1(S°) = SG for the identity component. Clearly 1 — A, ~ %, so the homotopy
type of TC(x) at p is determined by the split fiber sequence

hofib(trf ¢1) — TC(¥) — Q(S°).

The inclusion §° = CP) — CP® induces a splitting Q(X4CP>) ~ Q(S') x
Q(XCP™>). The composite

Q(s") — Q(uyCp=) e,

Qo(S”)
is induced by the Hopf map 7, and is thus null homotopic at odd p. Therefore trf 5
factors through a restricted transfer map

t: Q(ECP™) — Qo(S")
and hofib(trfg: ) ~ Q(S') x hofib(t). Thus
TC(*) ~ Q(S°) x Q(S') x hofib(t).

We remark that n is null at p as an infinite loop map, so ¢ is an infinite loop map,
and hofib() is an infinite loop space.

TC(Z) is essentially K-local in the sense that it is the connective cover of its
K /p-localization. (This is not quite true. There is a discrepancy in total degree
one, but this will not affect our results. We choose to suppress the comments
needed to account for this difference.) For brevity we will use the term “K-local”
in this modified sense. Recall that K/p-localization is K-localization followed by
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p-adic completion, which is implicit in our notation. Hence the linearization map
L: TC(x) — TC(Z)induces a map Q(S°) x Q(S') — T'C(Z) which factors through
the K-localizations Lg/,Q(5°)[0,00) = ImJ and Lg,,Q(S')[0,00) = BImJ. By
[BM, R] the cofiber of the factorized map is SU and there is a splittable fiber
sequence

ImJ x BImJ — TC(Z) — SU

identifying TC(Z) as ImJ x BIm J x SU.

Hence the linearization map L: TC(x) — TC(Z) is given by the localization
maps e: Q(S°) — ImJ and Be: Q(S') — BImJ on the first two factors, and a
map hofib(t) — T'C(Z) as the third factor. The first two maps are split surjections,
with fibers Cok J and B Cok J, which are 2p(p—1)—3 and 2p(p—1) —2- connected,
respectively. Thus in the image of J range these maps are equivalences, and we

can identify the fiber of L, in this range, with the fiber of the composite map
£: hofib(t) - TC(Z) — SU.

2. THE HOMOTOPY FIBER OF THE S'-TRANSFER

To begin this analysis, we first study the map ¢: Q(XCP>) — Qo(S°) and its
homotopy fiber.
There are natural maps

CcPy® — | [ BU(n) — Z x BU

n>0

given by inclusion on the n = 1 summand, and group completion. Adjunction with
respect to the additive infinite loop space structure on the target gives an infinite
loop map ey : Q(CP{°) — Z x BU. The collapse map CPY® — S0 is a right inverse
to the first map of the cofiber sequence S — CPY® — CP*, where the non-base
point of S° is mapped to the complex line C! C C*, viewed as the point CP°
in CP>. Hence there is a section Q(CP>) — Q(CP{®), essentially taking a line
L C C* to the difference L — C'.

We view BU as the base point component of Z x BU. Let e: Q(CP>~) — BU

be an infinite loop map making

€

Q(CP>) —— BU

L

Q(CP¥) 5 7+« BU

homotopy commute. € is well defined up to homotopy. Let F' = hofib(¢) be its
homotopy fiber.

The following splitting is due to Segal [Se|. Another proof using transfer maps
was given later by Becker [Be|. ((What about James 7))

Proposition (Segal). The map € has a right homotopy inverse as a map of spaces.
Hence there 1s a homotopy equivalence of spaces

Q(CP>~) ~ BU x F.
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The homotopy groups of F are finite. [
We call F' the Becker—Segal space, and € the Becker—Segal map.

In the image of J range we can fiber this splitting over the S!-transfer map. For

this we will use the results of [BS] and [MMM].

Bott periodicity gives an infinite loop space equivalence #: Z x BU — QU. We
need to recall the explicit map. On base point components 3 restricts to a homotopy
equivalence BU — 1SU, which is the colimit of the Bott maps 8,: G,(C*™) —
QSU(2n) [Bo]. Here G,(C"**) denotes the Grassmann manifold of complex n-
planes in C***. g3, takes an n-plane X C C?” satisfying X = g(C") for some
g € SU(2n) to the loop t — [g,a(t)] =g-a(t)- g~ ' -a(t)”! in SU(2n). Here ¢ runs
from 0 to 1, and

a(t) = diag(e™,...,e™ " e7 ™ . e7 ™)

is the diagonal matrix with ™ as the first n diagonal entries and e~ ™ as the
last n entries. Thus £, is given in the H-group structure of QSU(2n) as the map
rotating by €™ on X and by e~ on the orthogonal complement X+, minus the
corresponding map for X = C*. We speak of 3,, as given by conjugation with «(t).

The map CP> — BU is the colimit of inclusions CP™ = G{(C**!) — G,(C*")
mapping L — X = L & C*!. Here C**! C C*" is viewed as the span of the first
and n last basis vectors e, eni1,...,€2n, and C*! is its orthogonal complement.

Thus the composite CP™ — G, (C*") Pm, QSU(2n) maps to loops of matrices

acting trivially upon the summand C*~', and thus factors through QSU(n + 1).
The map CP™ — QSU(n + 1) is given by conjugation with

o (t) = diag(e™, e ™, ... e ™).

Since the diagonal matrix with e™* in every diagonal entry is in the center of
U(n + 1), this map is also given by conjugation with

o' (t) = diag(e*™,1,...,1).

In the limit we find that CP*> — QSU is given in the H-group structure on the
target as the map taking a line L C CP*° to the loop of rotations around L, leaving
L fixed, minus the loop of rotations around C!, leaving (C' )~ fixed.

Define the map A: ¥ CP> — U by taking a point (L, z) € 4 CP> = CP° AS?
to the unitary matrix rotating by z on L and leaving the orthogonal complement
L+ fixed. This is the map denoted Ac in [MMM]. The discussion above shows that
Boe: CP* — QSU is the unique lift to SU of the difference of the adjoint of A
and the constant map CP>* — CP° — QU rotating about C!. This is just the
constant map CP> — CP° — CP® followed by the adjoint of ).

Consider the following diagram.
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2, CP>
A . A
g1 Be
U ——='Q(24CP*) —"> B(Z x BU) =>U
¢ & trf g1 lc
Jo % QO(SO) € Jo.

Proposition. The diagram above homotopy commutes. The bottom right square
18 homotopy commutative as a square of infinite loop spaces and maps.

Proof. We describe the notation while explaining why the diagram commutes.

€+, B and X were defined above. B denotes a delooping. ¢ is the adjunction unit.
The top right triangle commutes when restricted to S! = ¥, CP° C X, CP>,
essentially because all the maps involved induce 7 -isomorphisms.

Subtracting off this summand, we can compare two maps ¥CP> — U which lift
uniquely over SU. These are adjoint to the two maps shown to be homotopic by
the discussion preceding the diagram. Thus the top triangle homotopy commutes.

Let g € Z; = Z/(p—1) x Zp be a topological generator, e.g. an integer generating
the units of Z /p?. Then Im J is defined as the homotopy fiber of 99 —1: Z x BU —
BU, and J; is the zero component of Im J. Here 9 is the Adams operation. ( is
the induced connecting map in the corresponding Puppe fiber sequence. e is the
Adams e-invariant, which by definition is an equivalence in the image of J range.

i is a section to e. jc is the complex J-homomorphism U — SG = Q1(S°) shifted
into the zero—component. Hence the bottom left triangle homotopy commutes. jg:
is the S'-equivariant J-homomorphism, taking a unitary isometry C* — C" to the
stable class of the map of unit spheres $?7~! — §27"~! viewed as a map of free
S1_spaces. The target space is identified with Q(X;CP°) via the Segal-tom Dieck
splitting, as explained in [BS]. The S!-transfer map trf 51 forgets the free S'-action.
Hence the inner triangle commutes. The top left triangle homotopy commutes by
Theorem B of [MMM].

We claim that the bottom right square homotopy commutes as a square of infinite
loop space maps. This is equivalent to the assertion that the two maps ¥, CP*>* —
Jo given by precomposing with ¢ are homotopic as maps of spaces. But this is clear
from the perimeter of the diagram, since e o ¢ is homotopic to the identity. [

We now combine the two infinite loop space squares.

t’l"fsl

Q(ECP™) — Q(,CP=) 2 gy (s0)

lBe qu C l

SU U Jo

t is the composite across the top, while we write ( again for the bottom composite.
Let JSU be the homotopy fiber of )9 —1: BSU — BSU. Then JSU ~ J, since p
is odd, so we can identify the homotopy fiber of { with SU again. Hence there is
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a natural map of homotopy fibers Be': hofib(t) — SU. Let BF' be the homotopy
fiber of Be'. (We write these spaces and maps as deloopings to make the notation
more consistent.)

Then there is a 3 x 3 diagram of fiber sequences

BF' ——— hoﬁb(t) L SU
Q(p?—1)
BF — = Q(3CP=) E< s gp

t ¢

Cok J ——= Q(5°) ———— J,

Hence F' = QBF' has finite homotopy groups, and agrees with F' in the image
of J range. Cok J is by definition the homotopy fiber of e.

Proposition. The delooped Becker-Segal map Be lifts to a map of infinite loop
spaces Be': hofib(t) — SU. In the image of J range Be' admits a right homotopy
imverse as a map of spaces, and 1ts homotopy fiber can be identified with BF. Hence
there 1s a homotopy equivalence of spaces

hofib(t) ~ SU x BF

in the image of J range.

Proof. Choose sections j: SU — Q(XCP>) and i: Jo — Qo(S°) to Be and e
respectively, in the homotopy category of spaces. Then the left square of

SU 1= Q(ECP>) Zw gy

.

Jo ——=Qu(8") —— o

will homotopy commute in the image of J range. Hence there is a map of fibers
SU — hofib(¢) defined in the image of J range, whose composite with ¢ to SU is
an equivalence in the same range. [

((Can j be chosen as js1 7))

3. HOMOTOPY OF THE BECKER—SEGAL SPACE

Let S°/p be the mod p Moore spectrum. There is an Adams map X£??725%/p =
52P=2/p — S°/p inducing an isomorphism m,(X;Fp) — mut2p—2(X;F,) when X is
a K-local infinite loop space. As is usual, this map is denoted v, and we note that
the mod p homotopy of our K-local infinite loop spaces are free modules over the
polynomial algebra F,[v].
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Proposition. In the image of J range, m.(F) 1s a nontrivial cyclic p-group in odd
degrees * satisfying 2k(p — 1) +1 < % < 2kp — 3 for some 2 < k < p, and trivial
otherwise.

Proof. The S'-equivariant sphere spectrum, with underlying S'-space Qg1 (S?), is
a split spectrum in the sense of [LMS]. Hence so is its K-localization Im J. Thus

ImJ% (ESL) 2 ImJ*(CP°) and ImJS (ESL) 2 ImJ,(CPX).

In particular we can compute m,Q(CP{°) (resp. m,Q(CP>)) in the image of J
range by considering truncated versions of the Tate spectral sequence for the Tate
construction FI(S',Im J) of [BM]. This Tate construction is denoted tg: (Im J)S1
in the notation of [GM].

Similar remarks apply in mod p homotopy. Hence there is a first quadrant
Atiyah—Hirzebruch spectral sequence

B}, = Hy(CP*;m,(Im J;F,)) = masa(Im J A CP™; )

with m,(Im J;F,) = Fy[a,b]/(a* = 0), dega = 2p — 3, degb = 2p — 2 and mod p
Bockstein £1(b) = a, mapping into the upper half plane Tate spectral sequence

;12
Es,*

~

E_S(Sl;w*(Im J;Fp))
Byft, ", a,b]/(a? = 0)

with a bidegree shift of (2,0). The point of making this comparison is that the
latter spectral sequence is an algebra spectral sequence. The periodic element
t e ﬁz(Sl;Fp) sits in bidegree (—2,0) in the Tate spectral sequence. There are
generators z; € ffgi((CPOO ;Fp) in bidegree (21,0) of the Atiyah—Hirzebruch spectral
sequence, mapping to t ¢!, for all 7 > 1.

The first nontrivial differentials in the Tate spectral sequence are d*?~2-differen-
tials corresponding to the first Steenrod pth power operation P! appearing as the
first nontrivial k-invariant of Q(S°) and ImJ at p. Since P'(t) = tP there is a
nonzero differential d??7%(¢) = t? - a. (We may define the generator a by this
identity, and then choose b to satisfy £;(b) = a.)

We may also truncate the Tate spectral sequence to the second quadrant, to
compute Im J*(CP$®). Since Q(S°) splits off from Q(CPL®), the zeroth column
(= the vertical axis) consists of infinite cycles. Hence b is an infinite cycle in the
Tate spectral sequence. It is not a d*-boundary, for t '@ is an integral class, and so
d*(t~'a) = 0 by comparison with the corresponding spectral sequence in integral
homotopy. Thus b is a permanent cycle in the Tate spectral sequence, for bidegree
reasons. In particular b acts on the entire Tate spectral sequence, and thus also
on the Atiyah—Hirzebruch spectral sequence, representing the vi-action on mod p
homotopy.

We find d??=2(¢¢ - b7) = it*tP~! . ab/ for all 4,5. This leaves the E*?~!-term

Efﬂ_l = [FP [tp7t_p7 b]{17t_1a}
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and the next possible nonzero differentials begin with dz(p2_1)(tp), for bidegree
reasons. As is shown in [BM], these differentials are indeed nonzero, but we shall
shortly see that these second and later generations of differentials do not play a
part within the image of J range.

By naturality, these differentials from the Tate spectral sequence translate over
to the Atiyah—Hirzebruch spectral sequence, yielding the following E*?~!-term:

2p—1 __
EXT =Fp[b{z1,.. ., 2p—1,2p0,Top—1,T2pa, T3p—1,T3p0,. .. }

which in the image of J range is also the E°°-term. For a first—quadrant 42" -1).
differential cannot affect classes in total degree below 2(p* —1)—1 > 2p(p—1) — 2.

In view of the splitting Q(CP>) ~ BU x F, the only classes in degrees 2,...,2p—
2, namely 1,...,z,_1, must represent the p — 1 generators of m,(BU;F,) as a
(free) Fp[vq]-module, corresponding to the p — 1 summands of the Adams splitting
of BU. By naturality of the v;-action on mod p homotopy, any homotopy section
BU — Q(CP* ) maps m.(BU;[F,) precisely onto the summands F, [b]{z1,...,2p—1}
of the above E°°-term, i.e. the classes in filtration 2p — 2 or less. Consequently
the remaining classes represent m,(F;F,), in pairs linked by (higher) Bockstein
operations, since 7, (F') is all torsion. We have

F, if 2k(p—1) <* < 2kp—1 for some 1 < k < p,

T (F3 ) =
+(F5 ) { 0 otherwise

in the image of J range. For every total degree there are permanent cycles in at most
one bidegree, in this range, whence the integral homotopy groups of F' are finite
cyclic, and located in the “lower half” of these total degrees. This is immediate from
the universal coeflicient theorem for mod p homotopy. The proposition follows. [

The order of these cyclic groups is determined by the following theorem of K.
Knapp [Kn].

Theorem (Knapp). The order of (Im J).(CP>) in degree x = 2n — 1 has p-adic
valuation

vp(|(Im J)on-1(CP™)) = Y (L+2p(5))  —vp(nl).

i=1

When n < p(p — 1) this equals [ZT_ll] — [%], which in turn equals 0 or 1. [
We summarize.

~

Corollary. In the image of J range, m.(F) = F, in odd degrees * satisfying 2k(p—
1)+ 1<% <2kp—3 for some 2 <k <p, and 7.(F) =0 otherwise. 0O

4. THE LINEARIZATION MAP

Finally we look at the homotopy fiber of the linearization map A(x) — K(Z).
By the cited theorem of Dundas, this is equivalent to the homotopy fiber of the
linearization map T'C(x¥) — TC(Z). In the image of J range we have noted that this
in turn agrees with the homotopy fiber of the rational equivalence £: hofib(t) — SU.
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Proposition. There is a (4p — 6)-connected map BSG — hofib(A(x) — K(Z)).

Proof. Recall that SG = Q(S°) is (2p — 4)-connected. So there is a (4p — 6)-
cartesian square

A(BSG) — A(x)
L,k
A(x) —2 > K(7).

Compare Theorem 9.10 of [BM]. This uses that A(X) is a 1-analytic functor in
the sense of Goodwillie [Go]. Furthermore the derivative of A(X) at X = * is the
sphere spectrum, i.e. Q(BSG) — hofib(A(BSG) — A(x*)) is a (4p — 6)-connected
map. Finally BSG — Q(BSQ) is also (4p — 6)-connected. The result follows. [

These observations may be summarized in the diagram

BSG — hofib(£)

BF' — hofib(?) B sy

£

SU

where BSG — hofib({) is at least (4p — 6)-connected.
((What is the map BF' — SU ? Is some operation SU — SU involved ?))
In the image of J range we get an exact sequence

0 — w1 SU 4 Ton+1SU — w2, hofib(£) — my, BF' — 0.

Furthermore 73,41 hofib(¢) = 0. Below degree 4p — 6 the group my, BF' vanishes,
and the rational equivalence (hence injection) m3,41SU — 72,41 SU has cokernel
monBSG, which is trivial unless n = p — 1. In this case the cokernel is [F,.

¢ induces a homomorphism of F,[v]-modules 7. (hofib(t);F,) — m.(SU;F,).
The target is a free module of rank p — 1 with generators in degrees 3,5,...,2p—1.
The map induces an isomorphism onto the p — 2 first of these generators, in the
degrees 3,5,...,2p — 3, and is zero in degree 2p — 1. This follows because the fiber
agrees with BSG in this range. Hence by the v;-action, £ induces an isomorphism
Tont1 hofib(t) — m2p,41SU for all n £ 0 mod p — 1. So w3, hofib(¢) = 73, BF' in

these degrees.

Tons1(BF';F,) —> myny1(hofib(1); Fp) 2> myp i1 (SU;F,)

£

7l'2n_|_1(SU; [Fp)

Ton(BSG;Fp) —— ma,(hofib(£); F, )
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Hereafter suppose that n = 0 mod p — 1. In the image of J range m, BF' =
Ton BF = 0 in these degrees. Hence my,11(hofib(t);F,) = m3,41(SU;F,), and
Ton(hofib(¢); F,) = 0. Thus £ induces a homomorphism of free rank one F,[v;]-
modules, which takes the generator to zero. Thus this homomorphism is zero, and
there is an isomorphism 73y,41(SU;F,) — man(hofib(£); F, ), again of free rank one
Fp[v1]-modules.

Thus 73, (BSG; Fp) — m2,(hofib(£); Fp ) is a map of free rank one I, [v1]-modules
with generators in degree 2p — 2, which takes a module generator to a module
generator, and hence is an isomorphism (in the image of J range). Thus F, &
TonBSG — w3, hofib(£) is a surjection onto a nontrivial group, i.e. 73, hofib(£) =
F, in all these cases. (The first element of order p? in 7, BSG is in degree 2p(p—1),
just outside the image of J range.)

Our main result follows.

Theorem. (i) In the image of J range, i.e. through degree 2p(p — 1) — 3, the p-
primary homotopy groups of the fiber of the linearization map L: A(x) — K(Z) are
concentrated in even degrees, and satisfy

F, ifk(p—1)<n<kp for some2<k<p

0 otherwise.

Ton hofib(L) = {

(i) The classes in degrees 2n with n =0 mod p — 1 are the image of the natural
map BSG — hofib(L), and map to zero in man A(*).

(ii1) The remaining classes, in degrees 2n with k(p — 1) < n < kp, inject into
TonA(%*), onto direct summands.

Proof. We have proved claim (i) above. The second part of claim (ii) follows since
the natural map BSG — A(BSG) — A(x) factors through *. Claim (iii) is clear
since the remaining torsion classes map to the direct summand 7, BF' in 7. TC (%),
by a map factoring through A(x). O
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